The Road to Immutability

Table of Contents

Dedication

1. Introduction

2. Assumptions

3. The purpose of annotations
4. Final fields

5.
6
7
8
9

Modification

. Containers

. Linking, dependence

. Accessible and hidden content
. Immutability

9.1. Definition and examples
9.2. Inheritance

9.3. Generics

9.4. Abstract methods

9.5. Static side effects

9.6. Value-based classes

9.7. Dynamic type annotations

10. Eventual immutability

10.1. Builders

10.2. Definition

10.3. Propagation

10.4. Before the mark

10.5. Extensions of annotations

10.6. Frameworks and contracts

11. Modification, part 2

11.1. Cyclic references
11.2. How to compute linking

11.3. Locally implemented abstract methods

12. More on hidden content

12.1. Visitors

12.2. Propagating modifications
12.3. Content linking

12.4. Iterator, Iterable, loops
12.5. Independence of types

13. Further notes on immutability

13.1. Extendability of types

0 W NN

11
16
18
23
23
31
32
33
39
42
44
44
44
46
49
49
50
50
51
51
33
54
37
37
60
62
64
65
69
69

13.2. Eventual immutability 69

13.3. Constant types 70
13.4. Field access restrictions 70
14. Support classes 72
14.1. FlipSwitch 72
14.2. SetOnce 73
14.3. EventuallyFinal 75
14.4. Freezable 76
14.5. SetOnceMap 76
14.6. Lazy 77
14.7. FirstThen 79
14.8. Support classes in the analyser 81
15. Other annotations 82
15.1. Nullable, not null 82
15.2. Identity and fluent methods 83
15.3. Finalizers 84
15.4. Utility classes 89
15.5. Extension classes 89
15.6. Singleton classes 90
16. Preconditions and instance state 91
17. Appendix 93
17.1. Default annotations 93
18. Copyright and License 95

Effective and eventual immutability with e2immu, a static code analyser for
Java.

Main website: https://www.e2immu.org. Fifth iteration, October 2023.

Dedication

This work is dedicated to those who have had, or are still having, a difficult pandemic.

1. Introduction

This document aims to be a logical walk through of the concepts of the e2imumu project. It does not
intend to be complete, and is not structured for reference.

The overarching aim of the e2immu project is to improve every day programming by making code
more readable, more robust, and more future-proof. More concretely, the project focuses on adding
various forms of immutability protections to your Java code base, by making the immutable nature
of the types more visible.

https://www.e2immu.org

Why Java? As a widely used object-oriented programming language, it has evolved over the years,
and it has been increasingly equipped with functional programming machinery. It is therefore
possible to write Java code in different styles, from overly object-oriented to almost fully functional.
Combine this with lots of legacy code, both in house and in libraries, and many large software
projects will end up mixing styles a lot. This adds to the complexity of understanding and
maintaining the code base.

Why immutability? An important aspect of understanding the code of large software projects is to
try to assess the object lifecycle of the data it manages: when and how are these objects modified? In
object-oriented programming, full of public getters and setters, objects can be modified all the time.
In many a functional set-up, objects are immutable but new immutable versions pop up all the
time. Java allows for the whole scala from object-oriented to functional, and the whole ecosystem
reflects this choice.

An easy way to envisage the life cycle of an object is to assume that it consists of a building phase,
followed by an immutable phase. We set out to show that there are different forms of immutability,
from very strict deep immutability to weak guarantees of non-modification, that can be made
visible in the code. We believe that code complexity can be greatly reduced when the software
engineer is permanently aware of the modification state of objects.

The e2Zimmu project consists of a set of definitions, a static code analyser to compute and enforce
rules and definitions, and IDE support to visualize the results without cluttering. Using eZimmu in
your project will help to maintain higher coding standards, the ultimate beneficiary being code that
will survive longer.

A lack of references to academic literature in this version of the document is explained by the fact
that this is my first foray into the world of static code analysers, and theory of software engineering
and programming languages. Academically coming from the theory of machine learning, I spent a
decade and a half writing software and managing teams of software engineers. This work builds on
that practical experience alone. I did not consult or research the literature, and I realise I may be
duplicating quite a lot here. I only want to mention JetBrain’s brilliant Intelli] IDEA, which acts as
my g old standard.

2. Assumptions

We discuss the Java language, version 8 and higher. We have already indicated that we believe that
Java offers too much freedom to programmers. In this section, we impose some limits that are not
critical to the substance of the discussion, but facilitate reasoning. Think of them as low-hanging
fruit programming guidelines:

* Exceptions do not belong to the normal programming flow; they are meant to raise situations
that the program does not want to deal with.

* Parameters of a method cannot be assigned to; we act as if they always have the final modifier.
The simple way around is to create a new local variable, and assign the parameter to it.

* We make no distinction between the various non-private access modifiers (package-private,
protected, public). Either a field, method or type is private, or it is not.

» Synchronization is orthogonal to the data flow of the program; whilst it may have an influence

https://www.jetbrains.com/idea/

on when certain code runs, it should not be used to influence the semantics of the code.

The e2immu code analyser warns for many other doubtful practices, as detailed in the user manual.

3. The purpose of annotations

In this document we will add many annotations to the code fragments shown. We are acutely
aware annotations may clutter the code and can make it less readable. Some IDEs, however, like
JetBrains' Intelli] IDEA, have extensive support to make working with annotations visually pleasing.

The e2immu code analyser computes almost all the annotations that we add to the code fragments
in this document. The complementary IDE plugin uses them to color code types, methods and fields.
Except when the annotations act as a contract, in interfaces, they do not have to be present in your
code.

Explicitly adding the annotations to classes can be helpful during software development, however.
Say you intend for a class to be immutable, then you can add the corresponding annotation to the
type. Each time the code analyser runs, and the computation finds the type is not immutable, it will
raise an error.

Explicit annotations also act as a safe-guard against the changing of semantics by overriding
methods. Making the method final, or the type final, merely prohibits overriding, which is
typically too strong a mechanism.

The final situation where explicit annotations in the code are important, is for the development of
the analyser. We add them to the code as a means of verification: the analyser will check if it
generates the same annotation at that location.

4. Final fields

Let us start with a definition:

Definition: We say a field is effectively final when it either has the modifier final, or it is
not assigned to in methods that can be transitively called from non-private (non-constructor)
methods.

The analyser annotates with @Final in the latter case; there is no point in cluttering with an
annotation when the modifier is already there. Fields that are not effectively final are called
variable, they can optionally be annotated with @Final(absent=true) .

This definition allows effectively final fields to be assigned in methods accessible only from the
constructor:

Example 1, effectively final, but not with the final modifier
class EffectivelyFinall {
private Random random;

public EffectivelyFinall() {
initialize(3L);
}

private void initialize(long seed) {
random = new Random(seed);

}

// no methods in the class call initialize()

public int nextInt() {
return random.nextInt();

}

Obviously, if the same method can be called after construction, the field becomes variable:

Example 2, the method setting the field is accessible after construction

class EffectivelyFinal2 {
(absent = true)
private Random random;

public EffectivelyFinal2() {
reset();

}

public void reset() {
initialize(3L);
}

private void initialize(long seed) {
random = new Random(seed);

}

public int nextInt() {
return random.nextInt();

}

Note that it is perfectly possible to rewrite the first example in such a way that the final modifier
can be used. From the point of view of the analyser, this does not matter. The wider definition will
allow for more situations to be recognized for what they really are.

When an object consists solely of primitives, or deeply immutable objects such as java.lang.String,
having all fields effectively final is sufficient to generate an object that is again deeply immutable.

Example 1, an object consisting of primitives and a string.

class DeeplyImmutablel {
public final int x;
public final int y;
public final String message;

public DeeplyImmutablel(int x, int y, String message) {
this.message = message;
this.x = x;
this.y = y;

Example 3, another way of being effectively final
class DeeplyImmutable2 {
private int x;
private int y;
private String message;

public DeeplyImmutable2(int x, int y, String message) {
this.message = message;
this.x = x;
this.y = y;

}

public String getMessage() {
return message;

}

public int getX() {
return x;

}

public int getY() {
return vy,

}

Examples 3 and 4 are functionally equivalent: there is no way of changing the values of the fields
once they have been set. In the real world there may be a reason why someone requires the getters.
Or, you may be given code as in Example 2, but you are not allowed to change it. Whatever the
reason, the analyser should recognize effective finality.

Note that we will not make a distinction between any of the different non-private access modes in
Java. Only the private modifier gives sufficient guarantees that no reassignment to the fields is
possible.

We now have observed that for the purpose of defining immutability, having all your fields
effectively final can be sufficient in certain, limited circumstances.

The analyser annotates types which are not immutable, but whose fields are all effectively final,
with @FinalFields . Types that have at least one variable field are never immutable, and are
optionally annotated with @FinalFields(absent=true) .

Note that as of more recent versions of Java, the record type enforces explicitly final fields, along
with additional support for equality and visibility. Any record will be at least @FinalFields.

We will in this work make a distinction between a property being effectively or eventually present.
The former indicates a property as computed after construction of the object, which is potentially a
little broader than the definition of the language. The latter is used when this property can only be
obtained after the code reaches a certain state. More on this later, but here is a first example of type
with eventually final fields:

Example 4, simplified version of SetOnce
import java.util.Random;

(after="random")
class OneRandom {
private Random random;

("random")
public void set(Random r) {
if(r == null) throw new NullPointerException();
if(this.random != null) throw new I1legalStateException("Already set");
this.random = r;

(after="random")
public Random get() {
if(this.random == null) throw new I1legalStateException("Not yet set");
return this.random;

Once a value has been set, the field random cannot be assigned anymore.

We have just observed that if one restricts to primitives and types like java.lang.String, final fields
are sufficient to guarantee deep immutability. It is not feasible, and we do not wish to, work only
with deeply immutable objects. Moreover, it is easy to see that final fields alone not enough to
guarantee what we intuitively may think immutability stands for:

Example 5, final fields do not guarantee intuitive immutability

class StringsInArray {
private final String[] data;

public StringsInArray(String[] strings) {
this.data = strings;

}

public String getFirst() {
return data[0];

}

String[] strings = { "a", "b" };

StringsInArray sia = new StringsInArray(strings);
Assert.assertEquals("a", sia.getFirst());
strings[0] = "c¢"; @

Assert.assertEquals("c", sia.getFirst()); @

@ External modification of the array.

@ As a consequence, the data structure has been modified.

To continue, we must first understand the notion of modification.

5. Modification

Definition: a method is modifying if it causes an assignment in the object graph of the fields
of the object it is applied to.

We use the term 'object graph' to denote the fields of the object, the fields of these fields, etc., to
arbitrary depth.

Consequently, a method is not modifying if it only reads from the object graph of the fields. The
analyser uses the annotations @NotModified and @Modified . They are exclusive, and the analyser will
compute one or the other for every method of the type. All non-trivial constructors are modifying,
so we avoid clutter by not annotating them.

Why not @Modifying and @NotModifying? The analyser will compute modifications
o of fields and parameters as well. They will either be modified or not modified by the
code. To avoid confusion, we only use one set of annotations.

It follows from the definition that directly assigning to the fields also causes the @Modified mark for
methods. As a consequence, setters are @Modified, while getters are @NotModified. Consider

Example 6, modifying and non-modifying methods

class Counter {
// variable
private int counter;

public int getCounter() {
return counter;

}

public int increment() {
counter += 1;
return counter;

class CountedInfo {

private final Counter counter = new Counter();

public void printInfo(String info) {
System.out.println("Message " + counter.increment() +

: "+info);

}

We also see in the example that the printInfo method is @Modified . This is because it calls a
modifying method on one of its fields, increment.

Moving from methods to parameters and fields, keeping the same two annotations,

Definition: The analyser marks a parameter as modified when the parameter’s method
applies an assignment or modifying methods to the object that enters the method via the
parameter. This definition holds with respect to the parameter’s entire object graph.

We will apply a similar reasoning to a field:

Definition: The analyser marks a field as modified when at least one of the type’s methods,
transitively reachable from a non-private non-constructor method, applies at least one
assignment to or modifying method to this field.

Let us start by agreeing that the methods of Object and String are all @NotModified. This is pretty
obvious in the case of toString, hashCode, get(Class. It is less obvious for the wait and other
synchronization-related methods, but remember that as discussed in the Assumptions, we exclude

synchronization support from this discussion.
Note also that we cannot add modifying methods to the type DeeplyImmutablel defined earlier.

Proceeding, let us also look at (a part of) the Collection interface, where we have restricted the
annotations to @NotModified and @Modified — others will be introduced later. An abstract method
without @Modified is assumed to be non-modifying, i.e., @NotModified is implicitly present. (The
reason for this choice is explained later, in Abstract methods.) While in normal classes the analyser
computes the annotations, in interfaces the user stipulates or contracts behaviour by annotating:

Example 7, modification aspects of the Collection interface
public interface Collection<E> extends Iterable<E> {

boolean add(E e);

boolean addAl1(Collection<? extends E> collection);
boolean contains(Object object);

boolean containsAl1(Collection<?> c);

void forEach(Consumer<? super E> action);

boolean isEmpty();
boolean remove(Object object);

boolean removeAll(Collection<?> c);
int size();
Stream<E> stream();

Object[] toArray();

Adding an object to a collection (set, list) will cause some assignment somewhere inside the data
structure. Returning the size of the collection should not.

Under supervision of the analyser, you will not be able to create an

o implementation of this interface which violates the modification rules. This is
intentional: no implementation should modify the data structure when size is
called.

Adding all elements of a collection to the object (in addAl1l) should not modify the input collection,
whence the @NotModified. Other types in the parameters have not been annotated with

10

@NotModified:

e Object because it is immutable;

* E because it is of an unbound generic type, it has the same methods available as Object. No code
visible to implementations of Collection can make modifications to E without explicit down-
casting;

» Consumer because it is a functional interface (an interface with a single abstract method) in

java.util.function; they are @IgnoreModifications by convention, as explained later.

In order to keep the narrative going, we defer a discussion of modification in the context of
parameters of abstract types to the sections Abstract methods and More on hidden content. Here,
we continue with the first use case of modification: containers.

6. Containers

Loosely speaking, a container is a type to which you can safely pass on your objects, it will not
modify them. This is the formal rule:

Definition: a type is a container when no non-private method or constructor modifies its
arguments.

Whatever else the container does, storing the arguments in fields or not, it will not change the
objects you pass to it. You obviously remain free to change them elsewhere; then the container may
hold on to the changed object.

o We will use the term argument to denote the value passed to a parameter. The
latter is the variable, bound to a specific method, that receives this value.

Containers are complementary to immutable objects, and we will find that many immutable objects
are containers, while some containers are the precursors to immutable types. There are two
archetypes for containers: collections and builders.

The simple but useful utility type Pair trivially satisfies the container requirements:

11

Example 8, a Pair of objects

public class Pair<K,V> {
public final K k;
public final V v;

public Pair(K k, V v) {
this.k = k;
this.v = v;

}

public K getK() {
return k;

}

public V getV() {
return v;

}

While its fields are clearly final, it will remain to be seen if it satisfies all criteria for intuitive
immutability. However, it is easily recognized as a container: a type you use and trust to hold
objects.

Containers occur frequently as static nested types to build immutable objects. Examples of these
will follow later, after the definition of immutability.

In the following example, the first class is computed to be a container, the second is a container
according to the contract, and the third is a class which cannot be a container:

12

Example 9, two containers and a type that is not a container

@Container
class ErrorMessage {
// variable
private String message;

public ErrorMessage(String message) {
this.message = message;

}

@NotModified
public String getMessage() {
return message;

}

@Modified
public void setMessage(String message) {
this.message = message;

}
}

@Container

interface ErrorRegistry {
// @NotModified implicitly
List<ErrorMessage> getErrors();

@Modified
void addError(@hotModified ErrorMessage errorMessage); @

}

class BinaryExpression extends Expression {
public final Expression lhs;
public final Expression rhs;

/] ...

public void evaluate(@lodified ErrorRegistry errorRegistry) {
/] ...
if(lhs instanceof NullConstant || rhs instanceof NullConstant) {
errorRegistry.addError(new ErrorMessage(...)); @

}
/] ...

® Implementations of ErrorRegistry will not be allowed to use the setMessage setter in addError, or
in any other method not mentioned here, if the errorMessage has been assigned or added to any
of the fields.

@ Here a modifying method call takes place.

13

The BinaryExpression class is not a container, because it uses one of the parameters of a public
method, errorRegistry of evaluate, as a writable container.

Arrays are essentially containers holding the @FinalFields property: a chunk of memory is held in
an effectively final field, and array access reads and writes from this memory object. Indeed,
consider the following semi-realistic implementation of an Integer array based on a ByteBuffer:

14

Example 10, an array is a container with final fields

interface Array<T> {
int length();

T get(int index);

void set(int index, T t);

static class IntArray implements Array<Integer> {
private final ByteBuffer byteBuffer;
private final int size;

public IntArray(int size) {
this.size = size;
byteBuffer = ByteBuffer.wrap(new byte[size * Integer.BYTES]);

public int length() {
return size;

}

public Integer get(int index) {
return byteBuffer.getInt(index * Integer.BYTES);
}

public void set(int index, Integer i) {
byteBuffer.putInt(index * Integer.BYTES, 1);

}

public void test() {
IntArray ia = new IntArray(5);
for (int i =0; i < 5; i++) ia.set(i, i + 1);
assertEquals(3, ia.get(2));

It would have been better to show an ErrorMessage array, because, contrary to Integer, the former is
mutable (it has a modifying method setMessage). The technical aspect of storing and retrieving the
reference to the object, which is not normally available, prevents us from doing this here.

15

To conclude this section, note that the definition of @Container carefully words ... modifies its
arguments. This is almost equivalent to ensuring that all non-private methods have all their
parameters marked as @NotModified. However, under those conditions, it is still possible to change
the object graph of the arguments, as the following example shows:

Example 11, an instance where @NotModified on the parameters is not enough to ensure @Container

class ErrorRegistry {
private final List<ErrorMessage> messages = new ArrayList<>();

public void add(ErrorMessage message) {
messages.add(message);

}

public void changeFirst() {
if(!messages.isEmpty()) {
messages.get(0).setMessage("changed!");

}

Here, objects passed on to the ErrorRegistry are not modified by the add method, but they may be
modified later by a call to the changeFirst method, violating the idea that all objects passed to the
container are safe from modification. The analyser will need to guard against this; and its tool to this
end is linking.

7. Linking, dependence

Let us now elaborate on how we will compute modifications, in a path towards immutability.
Consider the following example:

Example 12, a field assigned to a constructor parameter

class LinkExample1<X> {
private final Set<X> set;

public LinkExample1(Set<X> xs) {
this.set = xs;

}

public void add(X x) {
set.add(x);
}

After construction, an instance of LinkExamplel contains a reference to the set that was passed on as

16

an argument to its constructor. We say the field set links to the parameter xs of the constructor. In
this example, this is an expensive way of saying that there is an assignment from one to the other.
However, linking can become more complicated.

The e2immu analyser will add modification annotations to LinkExamplel as follows:

Example 13, a field linked to a constructor parameter, with annotations
class LinkExamplel<X> {
private final Set<X> set;

public LinkExamplel(Set<X> xs) {
this.set = xs;

}

public void add(X x) {
set.add(x);
}

The parameter x of LinkExamplel.add is @NotModified because the first parameter of Set.add is
@NotModified. The LinkExamplel.add method modifies the field, which causes the annotation first on
the method, then on the field, and finally on the parameter of the constructor. Because of the latter,
LinkExamplel cannot be marked @Container .

Linking looks at the underlying object, and not at the variable. Consider the following alternative
add method:

Example 14, alternative add method for LinkExample’

public void add(X x) {
Set<X> theSet = this.set;
X theX = x;
theSet.add(theX);

Nothing has changed, obviously. Finally, as an example of how linking can become more
complicated than following assignments, consider a typical view on a collection:

Example 15, linking using a method call

List<X> list = createSomelargelist();
List<X> sub = list.subList(1, 5);
sub.set(0, x); @

@ The modifying method call set will modify sub, and 1ist as well!

17

On the other side of the spectrum, linking does not work on objects that cannot be modified, like
primitives or deeply immutable objects such as the primitives, or java.lang.String.

Let us summarize by:
Definition: Two objects are not linked to each other when no modification to the first can
imply a modification to the second.
Conversely, two objects are dependent (or linked) when a modification to the first may imply
a modification to the second.
Linked objects must share a common sub-object: the object returned by sublList, for example, is

"backed" by the original list, in other words, it maintains a reference to the original list.

We will discuss linking in more detail in How to compute linking. For now, assume that a field links
to another field, or to a parameter, if there is a possibility that both variables represent (part of) the
same object (their object graphs overlap).

Linking between fields and parameters, and fields and return values of methods, is important to us:

Definition: A method or constructor parameter is not linked when it is not linked to any of
the fields of the type. A method is not linked when its return value is not linked to any of the
fields of the type.

When a constructor parameter is linked, any modification made to the object presented to this
parameter as an argument may have an influence on the object graph of the fields of the
constructor’s type. But do all these modifications matter to the type?

8. Accessible and hidden content

We will try to make our case using two examples. First, consider Counter and Counters:

18

Example 16, Counter, Counters

interface Counter {

void increment();
int getValue();

String getName();
}

class Counters {
private final Map<String, Counter> counters;

public Counters(Collection<Counter> counterCollection) {
this.counters = counterCollection.stream().collect
(Collectors.toUnmodifiableMap(Counter::getName, ¢ -> ¢));

}

public Counter getCounter(String name) {
return counters.get(name);

}

public int getValue(String name) {
return getCounter(name).getValue();

}

public void increment(String name) {
getCounter(name).increment();

}

public void incrementAll() {
counters.values().forEach(Counter::increment);
}
}

The constructor Counters copies every counter in the counterCollection into a new, unmodifiable
map. Clearly, external modifications to the collection itself (i.e., adding, removing a new Counter
element) made after creation of the Counters object, will have no effect on the object graph of the
field counters:

19

List<Counter> list = new ArraylList<>();

Collections.addA11(1list, new CounterImpl("sunny days"), new CounterImpl("rainy days")
)i

Counters counters = new Counters(list);

Counter sunnyDays = list.remove(0);

assert "sunny days".equals(sunnyDays.getName());

assert sunnyDays == counters.getCounter("sunny days");

However, consider the following statements executed after creating a Counters object:

Example 17, after creating a Counters object

int rainyDays = counters.getValue("rainy days");

Counter ¢ = counters.get("rainy days");

c.increment();

assert c.getValue() == rainyDays + 1;

assert counters.getValue("rainy days") == rainyDays + 1;

An external modification (c.increment()) to an object presented to the constructor as part of the
collection has an effect on the object graph of the fields, to the extent that an identical, non-
modifying method call returns a different value!

We must conclude that the parameter of the constructor counterCollection is linked to the field
counters, even if modifications at the collection level have no effect.

Now we put the Counters example in contrast with the Levels example, where the modifying
method increment() has been removed from Counter to obtain Level:

20

Example 18, Level, Levels

interface Level {
int getValue();
String getName();
+

class Levels {
private final Map<String, Level> levels;

public Levels(Collection<Level> levelCollection) {
this.levels = levelCollection.stream().collect
(Collectors.toUnmodifiableMap(Level::getName, ¢ -> c));
}

public Level getlLevel(String name) {
return levels.get(name);

}

public int getValue(String name) {
return getlLevel(name).getValue();

}
}

As a consequence of the absence of increment() in Level, we had to remove increment() and
incrementAll() from Levels as well. In fact, whether the Level instances are modifiable or not, does
not seem to matter anymore to Levels.

We propose to split the object graph of a field into two parts: its accessible part, and its hidden part.

Definition: A type A, part of the object graph of the fields of type T, is accessible inside the
type T when any of its methods or fields is accessed. The methods of java.lang.Object are
excluded from this definition.

A type that is part of the object graph of the fields, but is not accessible, is hidden (when it is
an unbound type parameter) or transparent (when it is not).

A type which is transparent can be replaced by an unbound type parameter, which is why we will
use the term hidden from now on. Note: if it were not for transparent types, which are clearly
accessible but are never accessed, we would not define something "accessible" in terms of
"accessed". But we can argue that having transparent types in the code is poor programming
practice (to the extent that the analyser can be configured to raise an error when they are present),
and "hidden" is the complement of "accessible".

When a type C extends from a parent type P, we see an instance of C as being composed of two
parts: the methods and fields of P, augmented by the methods and fields of C. Whilst the part of the
parent, P, can be accessible, the part of the child ¢ may remain hidden. Similarly, when T
implements the interface I, but the interface is used as the formal type, then the methods and fields

21

of I are accessible, but the ones augmented by the implementation T remain hidden. In the example
of Level, implementation or extensions may be modifiable (such as Counter), but when presented
with Level only, there are no modifications to be made. Inside Levels, where we are limited to Level,
no such extensions are accessible.

Armed with this definition, we split the combined object graph of the fields of a type into the
accessible content, and the hidden content:

Definition: The accessible content of a type are those objects of the object graph of the fields
that are of accessible type.

The hidden content of a type are those objects of the object graph of the fields that are of
hidden (or transparent) type.

Note that we must make this distinction, because every interface is meant to be implemented, and
every type, unless explicitly marked final or sealed can be extended in Java. These extensions
could be completely outside the control of the current implementation (even though we can use the
analyser to constrain them).

In the first example of this section, LinkExamplel, objects of the type X form the hidden content of
LinkExamplel, while the Set instance is the accessible content. In Counters, Map, String and Counter
are accessible, but whatever augments to Counter by implementing it r emains hidden. Exactly the
same applies to Levels: Map, String and Level are accessible, but whatever augments Level by
implementing it remains hidden.

One of the central tenets of our definition of immutability will be that

A type is not responsible for modifications to its hidden content.

Recall that by definition, any modifications to the hidden content must be external to the type.

We end this section by defining what linking means with respect to the accessible and hidden
content of the fields. The definition of linking given in the previous section is absolute, in the sense
that it covers the whole object graph of the objects being linked.

When a parameter is linked to a field, we could try to find out if the modifications affect the
accessible content, given that we state that modifications to the hidden content are outside the
scope of the type anyway. In other words, we could distinguish between different forms of linking:

Definition: a parameter or method return value is

» dependent on the fields if and only if it is linked to the accessible content of the type.

 independent of the fields if and only if it is at most linked to the hidden content of the
type

In other words, a parameter or method return value is dependent when a modification on the

22

argument or returned value has the possibility to cause a modification in the accessible part of the
fields.

Linking between parameters or return value and fields which does not involve the accessible part
of the fields, is called independence. We will elaborate in More on hidden content. In the following
sections, we will often use the term 'independent' when we mean not-dependent’, i.e., when there
is no linking or only linking to the hidden part of the object graph of the fields.

In terms of annotations, dependence will be the default state for objects of types where dependence
is possible. We will not annotate it most of the time; if we do, we use the annotation
@Independent(absent=true). The annotation @Independent on parameters and methods will be used
for absence of linking. When a type is deeply immutable, @Independent is the default state, and
therefore it will be omitted. We use @Independent(hc=true) to stress the linking to the hidden part.

Now, all pieces of the puzzle are available to introduce immutability of types.

9. Immutability

9.1. Definition and examples

First, what do we want intuitively? A useful form of immutability, less strong than deeply
immutable, but stronger than final fields for many situations. We propose the following
description:

After construction, an immutable type holds a number of objects; the type will not change
their content, nor will i t exchange these objects for other objects, or allow others to do so.
The type is not responsible for what others do to the content of the objects it was given.

Technically, immutability is much harder to define than final fields. We identify three rules, on top
of the obvious final fields requirement. The first one prevents the type from making changes to its
own fields:

Definition: the first rule of immutability is that all fields must be @NotModified.

Our friend the Pair satisfies this first rule:

23

Example 2, the class Pair, revisited

public class Pair<K,V> {
public final K k;
public final V v;

public Pair(K k, V v) {
this.k = k;
this.v = v;

Note that since K and V are unbound generic types, it is not even possible to modify their content
from inside * Pair’, since there are no modifying methods one can call on unbound types. The
types K and V are hidden in Pair; it does not have any accessible content.

How does it fit the intuitive rule for immutability? The type Pair holds two objects. The type does
not change their content, nor will it exchange these two objects for others, or allow others to do so.
It is clear the users of Pair may be able to change the content of the objects they put in the Pair.
Summarizing: Pair fits the intuitive definition nicely.

Here is an example which shows the necessity of the first rule more explicitly:

Example 3: the types Point and Line

class Point {
// variable
private double x;

// variable
private double y;

public double getX() {
return x;

}

public void setX(double x) {
this.x = x;

}

public double getY() {
return vy,

}

public void setY(double y) {

24

this.y = y;

class Line {

private Point point1;

private Point point2;

public Line(Point point1, Point point2) {
this.point1 = point1;
this.point2 = point2;

public Point middle() {
return new Point((point1.getX() + point2.getX())/2.0,
(point1.getY()+point2.getY())/2.0);

public void translateHorizontally(double x) {
pointT1.setX(point1.getX() + x); @
point2.setX(point2.getX() + x);

@ Modifying operation on point1.

The fields point1 and point2 are effectively final. Without the translation method, the fields would
be @NotModified as well. The translation method modifies the fields' content, preventing the type
from becoming immutable.

From the restriction of rule 1, that all its fields should remain unmodified, it follows that, excluding
external changes, every method call on a immutable container object with the same arguments will
render the same result. We note that this statement cannot be bypassed by using static state, i.e.,
state specific to the type rather than the object. The definitions make no distinction between static
and instance fields.

To obtain a useful definition of immutability, one which is not too strict yet follows our intuitive
requirements, we should allow modifiable fields, if they are properly shielded from the
modifications they intrinsically allow. We will introduce two additional rules to constrain the
modifications of this modifiable data. Together with the first rule, and building on final fields, we
define:

25

Definition: A type is immutable when

Rule 0: All its fields are effectively final.

Rule 1: All its fields are @NotModified.

Rule 2: All its fields are either private, or of immutable type themselves.

Rule 3: No parameters of non-private methods or non-private constructors, no return values
of non-private methods, are dependent on (the accessible part of) the fields.

Rule 2 is there to ensure that the modifiable fields of the object cannot be modified externally by
means of direct field access to the non-private fields. Rule 3 ensures that the modifiable fields of the
object cannot be modified externally by obtaining or sharing references to the fields via a
parameter or return value.

Types which are immutable will be marked @Immutable . When they are containers too, which
should be the large majority, we use @ImmutableContainer as a shorthand for the combination of the
two annotations.

Note that:

26

We state that all primitive types are immutable, as is java.lang.0Object. Whilst this is fairly
obvious in the case of primitives, immutability for Object requires us to either ignore the
methods related to synchronization, or to assume that its implementation (for it is not an
abstract type) has no fields.

A consequence of rule 1 is that all methods in a immutable type must be @NotModified.

A field whose type is an unbound type parameter, can locally be considered to be of immutable
type, and therefore need not be private. This is because the type parameter could be substituted
by java.lang.0bject, which we have just declared to be immutable. More details can be found in
the section on Generics.

Constructor parameters whose formal type is an unbound type parameter, are of hidden type
inside the type of the constructor. As a consequence, rule 3 does not apply to them. This will be
expanded on in More on hidden content.

The section on Inheritance will show how the immutability property relates to implementing
interfaces, and sub-classing. This is important because the definition is recursive, with
java.lang.0Object the immutable base of the recursion. All other types must extend from it.

The section on Abstract methods will detail how immutability is computed for abstract types
(interfaces, abstract classes).

The first rule can be reached eventually if there is one or more methods that effect a transition
from the mutable to the immutable state. This typically means that all methods that assign or
modify fields become off-limits after calling this marker method. Eventuality for rules 2 and 3
seems too far-fetched. We address the topic of eventual immutability fully in the section
Eventual immutability.

When the type has fields which allow hidden content, or the type is extendable (see

Extendability of types), the extra parameter hc=true will be added to the annotation. The
presence of this parameter is for instructive purposes only.

Let us go to examples immediately.

Example 19, explaining immutability: with array, version 1, not good

class ArrayContainer1<T> {
private final T[] data;

public ArrayContainer1(T[] ts) {
this.data = ts;

}

(he=true)
public Stream<T> stream() {
return Arrays.stream(data);

}

After creation, external changes to the source array ts are effectively modifications to the field data.
This construct fails rule 3, as the parameter ts is dependent. The field is a modifiable data structure,
and must be shielded from external modifications.

Note the use of @Independent(hc=true) annotation on the return value of stream(), to indicate that
modifications to the hidden content are possible on objects obtained from the stream.

Example 20, explaining immutability: with array, version 2, not good

class ArrayContainer2<T> {
public final T[] data;
public ArrayContainer2((he=true) T[] ts) {

this.data = new T[ts.length];
System.arraycopy(ts, 0, data, @, ts.length);

(he=true)
public Stream<T> stream() {
return Arrays.stream(data);

}

Users of this type can modify the content of the array using direct field access! This construct fails

27

rule 2, which applies for the same reasons as in the previous example.

Example 21, explaining immutability: with array, version 3, safe

(he=true)
class ArrayContainer3<T> {

private final T[] data; @®

public ArrayContainer3((he=true) T[] ts) {
this.data = new T[ts.length]; @
System.arraycopy(ts, 0, data, @, ts.length);

(hc=true)
public Stream<T> stream() {
return Arrays.stream(data);

}

@ The array is private, and therefore protected from external modification via the direct access
route.

@ The array has been copied, and therefore is independent of the one passed in the parameter.

The independence rule enforces the type to have its own modifiable structure, rather than someone
else’s. Here is the same group of examples, now with JDK Collections:

Example 22, explaining immutability: with collection, version 1, not good

class SetBasedContainer1<T> {
private final Set<T> data;
public SetBasedContainer1(Set<T> ts) {

this.data = ts; @
}

(hc=true)
public Stream<T> stream() {
return data.stream();

}

@ After creation, changes to the source set are effectively changes to the data.

The lack of independence of the constructor violates rule 3 in the first example.

28

Example 23, explaining immutability: with collection, version 2, not good

@FinalFields @Container

class SetBasedContainer2<T> {
@NotModified
public final Set<T> data; @

public SetBasedContainer2(@lndependent(hc=true) Set<T> ts) {
this.data = new HashSet<>(ts);

}

@NotModified

@Independent(hc=true)

public Stream<T> stream() {
return data.stream();

}

@ Users of this type can modify the content of the set after creation!
Here, the data field is public, which allows for external modification.

Example 24, explaining immutability: with collection, version 3, safe

@ImmutableContainer (he=true)
class SetBasedContainer3<T> {
@NotModified
private final Set<T> data; @

public SetBasedContainer3(@lndependent(hc=true) Set<T> ts) {
this.data = new HashSet<>(ts); @
}

@NotModified

@Independent(hc=true)

public Stream<T> stream() {
return data.stream();

}

@ The set is private, and therefore protected from external modification.

@ The set has been copied, and therefore is independent of the one passed in the parameter.

Finally, we have an immutable type. The next one is immutable as well:

29

Example 25, explaining immutability: with collection, version 4, safe

(hc=true)
class SetBasedContainer4<T> {

(hc=true)
public final Set<T> data; @

public SetBasedContainer4((he=true) Set<T> ts) {
this.data = Set.copy0f(ts); @
}

(he=true)
public Stream<T> stream() {
return data.stream();

}

@ the data is public, but the Set is @Immutable itself, because its content is the result of Set.copy0f,
which is an implementation that blocks any modification.

@ Independence guaranteed.

The section on Dynamic type annotations will explain how the @Immutable annotation travels to the
field data.

The independence rule, rule 3, is there to ensure that the type does not expose its modifiable data
through parameters and return types:

Example 26, explaining immutability: with collection, version 5, not good

class SetBasedContainer5<T> {
private final Set<T> data; @

public SetBasedContainer5((hc=true) Set<T> ts) {
this.data = new HashSet<>(ts); @
}

public Set<T> getSet() {
return data; ®
}

@ No exposure via the field
@ No exposure via the parameter of the constructor

® ... but exposure via the getter. The presence of the getter is equivalent to adding the modifiers

30

public final to the field.

Note that by decomposing rules 0 and 1, we observe that requiring all fields to be @Final and
@NotModified is equivalent to requiring that all non-private fields have the final modifier, and that
methods that are not part of the construction phase, are @NotModified. The final example shows a
type which violates this rule 1, because a modifying method has been added:

Example 27, explaining immutability: with collection, version 6, not good

class SetBasedContainer6<T> {

public final Set<T> set = new HashSet<>();

public void add((hc=true) T t) { set.add(t); }

(he=true)
public Stream<T> stream() { return set.stream(); }

9.2. Inheritance

Deriving from an immutable class is the most normal situation: since java.lang.0Object is an
immutable container, every class will do so. Clearly, the property is not inherited.

Most importantly, in terms of inheritance, is that the analyser prohibits changing the modification
status of methods from non-modifying to modifying in a derived type. This means, for example,
that the analyser will block a modifying equals() or toString() method, in any class. Similarly, no
implementation of java.util.Collection.size() will be allowed to be modifying.

The guiding principle here is that of consistency of expectation: software developers are expecting
that equals is non-modifying. They know that a setter will make an assignment, but they’ll expect a
getter to simply return a value. No getter should ever be modifying.

The other direction is more interesting, while equally simple to explain: deriving from a parent
class cannot increase the immutability level. A method overriding one marked @Modified does not
have to be modifying, but it is not allowed to be explicitly marked @NotModified:

31

Example 28, illegal modification status of methods

abstract class MyString implements Collection<String> {

private String string = "";

public int size() {
string = string + "!"; @
return string.length();

@
public abstract boolean add(String s);

@ Not allowed! Any implementation of Collection.size() must be non-modifying.

@ Not allowed! You cannot explicitly (contractually) change Collection.add() from @Modified to
@NotModified in a subtype.

Following the same principles, we observe that types deriving from a @Container super-type need
not be a container themselves. So while we may state that Collection is a container, it is perfectly
possible to implement a collection which has public methods which modify their parameters, as
long as the methods inherited from Collection do not modify their parameters, and the
implementation does not modify the objects linked to the parameters of the Collection methods.

Note that sealed types (since JDK 17) reject the 'you can always extend' assumptions of Java types.
In this case, all subtypes are known, and visible. The single practical consequence is that if the
parent type is abstract, its annotations need not be contracted: they can be computed because all
implementations are available to the analyser.

9.3. Generics

Type parameters are either unbound, in which case they can represent any type, or they explicitly
extend a given type. Because the unbound case is simply a way of saying that the type parameter
extends java.lang.Object, we can say that all type parameters extend a certain type, say T extends
E.

The analyser simply treats the parameterized type T as if it were the type E. In the case of an
unbound parameter type, only the public methods of java.lang.0bject are accessible. By definition,
the type belongs to the hidden content, as defined in Accessible and hidden content.

The analyser recognises types that can be replaced by an unbound parameter type, when they are
used transparently, and therefore belong to the hidden content: no methods are called on it, save
the ones from java.lang.0bject; none of its fields are accessed, and it is not used as an argument to
parameters where anything more specific than java.lang.0bject is required. It will issue a warning,
and internally treat the type as an unbound parameter type, and hence @ImmutableContainer , even
if the type is obviously modifiable.

32

The following trivial example should clarify:

Example 29, a type used transparently in a class

(he=true)
public class 0ddPair {

private final Set<String> set;
private final StringBuilder sb;

public 0ddPair(Set<String> set, StringBuilder sb) {
this.set = set;
this.sb = sb;

}

public Set<String> getSet() { return set; }
public StringBuilder getSb() { return sb; }

Nowhere in 0ddPair do we make actual use of the fact that set is of type Set, or sb is of type
StringBuilder. The analyser encourages you to replace Set by some unbound parameter type, say K,
and StringBuilder by some other, say V. The result is, of course, the type Pair as defined earlier.

Making a concrete choices for a type parameter may have an effect on the immutability status, as
will be explained in More on hidden content. Some examples are easy to see: any @FinalFields type
whose fields consist only of types of unbound type parameter, will become immutable when the
unbound type parameters are substituted for immutable types. Any immutable type whose hidden
content consists only of types of unbound type parameter, will become deeply immutable (i.e.,
devoid of hidden content) when the unbound type parameters are substituted for deeply
immutable types. The Pair mentioned before is a case in point, and an example for both rules:
Pair<Integer, Long>is deeply immutable.

9.4. Abstract methods

Because java.lang.0Object is an immutable container, trivial extensions are, too:

Example 30, trivial extensions of java.lang.0Object
@
interface Marker { }
class EmptyClass { }

class ImplementsMarker implements Marker { }

class ExtendsEmptyClass extends ImplementsMarker { }

33

@ Because interfaces are meant to be extended, adding hc=true is completely superfluous.

Things only become interesting when methods enter the picture. Annotation-wise, we stipulate that

o Unless otherwise explicitly annotated, we will assume that abstract methods, be
they in interfaces or abstract classes, are @NotModified.

Furthermore, we will also impose special variants of the rules for immutability of an abstract type
T, to be obeyed by the abstract methods:

Variant of rule 1: Abstract methods must be non-modifying.

Variant of rule 3: Abstract methods returning values must be not be dependent, i.e., the
object they return must be not be dependent on the fields. They cannot expose the fields via
parameters: parameters of non-primitive, non-immutable type must not be dependent.

The consequence of these choices is that implementations and extensions of abstract and non-
abstract types will have the opportunity to have the same immutability properties. This allows us,
e.g., to treat any implementation of Comparable, defined as:

Example 31, java.lang.Comparable annotated

interface Comparable<T> {

// @NotModified implicitly present
int compareTo(T other);

as an immutable type when the only method we can access is compareTo.

As for as the modification status of the parameters of abstract methods is concerned, we start off
with @Modified rather than with @NotModified:

Unless otherwise explicitly annotated, or their types are immutable, we will

o assume that the parameters of abstract methods, be they in interfaces or abstract
classes, are @Modified . Overriding the method, the contract can change from
@Modified to @NotModified, but not from @NotModified to @Modified.

While it is possible to compute the immutability and container status of interface types, using the
rules presented above, it often makes more practical sense to use the annotations as contracts: they
may save a lot of annotation work on the abstract methods in the interface. We repeat that no
implementation of a immutable interface is guaranteed to be immutable itself; nor does this
guarantee hold for the container property unless no new non-private methods have been added.

We continue this section with some examples which will form the backbone of the examples in
More on hidden content.

34

If semantically used correctly, types implementing the HasSize interface expose a single numeric
aspect of their content:

Example 32, the HasSize interface

@ImmutableContainer // computed (or contracted)
interface HasSize {

// implicitly present: @NotModified
int size();

@NotModified // computed, not an abstract method!
default boolean isEmpty() {
return size() == 0;

}

We extend to:

Example 33, still immutable: NonEmptyImmutablelist

@ImmutableContainer // computed, contracted
interface NonEmptyImmutablelist<T> extends HasSize {

// implicitly present: @NotModified
@Independent(hc=true) @
T first();

// implicitly present: @NotModified
void visit(@Independent(hc=true) Consumer<T> consumer); @ ®

@NotModified @

@0verride

default boolean isEmpty() {
return false;

}

@ Whilst formally, T can never be dependent because it must belong to the hidden content of the
interface, contracting the @Independent(hc=true) annotation here will force all concrete
implementations to have an non-dependent first method. If the concrete choice for T is
modifiable, the independence rule must be satisfied.

@ The parameter consumer would normally be @Modified , which would break the @Container
property that we wish for NonEmptyImmutablelist. However, as detailed and explained in More on
hidden content, the abstract types in java.util.function receive an implicit @IgnoreModifications
annotation.

® The hidden content of the type is exposed to the outside world via the accept method in the
consumer, similarly to being exposed via the return value of the first method.

35

@ Computed, because it is not an abstract method.
The Consumer interface is defined and annotated as:

Example 34, the java.util function.Consumer interface, annotated

@Functionallnterface
interface Consumer<T> {

@Modified
void accept(T t); // @Modified on t implicit

Implementations of the accept method are allowed to be modifying (even though in
NonEmptyImmutableList.visit we decide to ignore this modification!). They are also allowed to
modify their parameter, as we will demonstrate shortly.

Let’s downgrade from @ImmutableContainer to @FinalFields @Container by adding a modifying
method:

Example 4, not immutable anymore: NonEmptyList

@FinalFields @Container
interface NonEmptyList<T> extends NonEmptyImmutablelist<T> {

@Modified
void setFirst(@Independent(hc=true) T t);

The method setFirst goes against the default annotations twice: because it is modifying, and
because it promises to keep its parameter unmodified thanks to the @Container annotation on the
type. The @Independent(hc=true) annotation states that arguments to setFirst will end up in the
hidden content of the NonEmptyList. Implementations can even lose @FinalFields :

36

Example 35, mutable implementation of NonEmptyList

@Container
static class One<T> implements NonEmptyList<T> {

// variable
private T t;

@NotModified

@0verride

public T first() {
return t;

}

@Modified

@0verride

public void setFirst(T t) {
this.t = t;

}

@NotModified

@0verride

public int size() {
return 1;

}

@NotModified

@0verride

public void visit(Consumer<T> consumer) {
consumer.accept(t);

}

Here is a (slightly more convoluted) implementation that remains @FinalFields and @Container :

Example 36, final fields implementation of NonEmptyList

static class OneWithOne<T> implements NonEmptyList<T> {
private final One<T> one = new One<>();

public T first() {
return one.first();

}

public void setFirst(T t) {
one.setFirst(t);

}

public int size() {
return 1;

}

public void visit(Consumer<T> consumer) {
consumer.accept(first());

}

Obviously, an @ImmutableContainer implementation is not possible: the immutability status of an
extension (OneWithOne, One) cannot be better than that of the type it is extending from (NonEmptyList).

We end the section by showing how concrete implementations of the accept method in Consumer can
make modifications. First, modifications to the parameter:

Example 37, modification to the parameter of Consumer .accept

One<StringBuilder> one = new One<>();
one.setFirst(new StringBuilder());
one.visit(sb -> sb.append("!"));

The last statement is maybe more easily seen as:

38

Example 38, modification to the parameter of Consumer .accept, written out

one.visit(new Consumer<StringBuilder> {

public void accept(StringBuilder sb) {
sb.append("!");
}
3

Second, modifications to the fields of the type:

Example 39, the method Consumer .accept modifying a field
class ReceiveStrings implements Consumer<String> {

public final List<String> list = new ArrayList<>();

public void accept(String string) {
list.add(string);

}

9.5. Static side effects

Up to now, we have made no distinction between static fields and instance fields: modifications are
modifications. Inside a primary type, we will stick to this rule. In the following example, each call to

getK increments a counter, which is a modifying operation because the type owns the counter:

39

Example 40, modifications on static fields are modifications

@FinalFields @Container
public class CountAccess<K> {

@NotModified
private final K k;

@Modified
private static final AtomicInteger counter = new AtomicInteger();

public CountAccess(K k) {
this.k = k;
}

@Modified

public K getK() {
counter.getAndIncrement();
return k;

}

@NotModified
public static int countAccessToK() {
return counter.get();

}

We can explicitly ignore modifications with the contracted @IgnoreModifications annotation, which
may make sense from a semantic point of view:

40

Example 41, modification on static field, explicitly ignored

@ImmutableContainer (hc=true)
public class CountAccess<K> {

@NotModified
private final K k;

@IgnoreModifications
private static final AtomicInteger counter = new AtomicInteger();

public CountAccess(K k) {
this.k = k;
}

@NotModified @

public K getK() {
counter.getAndIncrement(); @
return k;

}

@NotModified
public static int countAccessToK() {
return counter.get();

}

@ The effects of the modifying method getAndIncrement are ignored.

Note that when the modification takes place inside the constructor, it is still not ignored, because
for static fields, static code blocks act as the constructor:

Example 42, modification of static field can occur inside constructor

@FinalFields @Container
public class HasUniqueldentifier<k> {

public final K k;
public final int identifier;

@Modified
private static final AtomicInteger generator = new AtomicInteger();

public HasUniqueIdentifier(K k) {
this.k = k;
identifier = generator.getAndIncrement();

Only modifications in a static code block are ignored:

41

Example 43, static code blocks are the constructors of static fields
public class CountAccess<K> {
private static final AtomicInteger counter;

static {
counter = new AtomicInteger();
counter.getAndIncrement(); @

@ Modification, part of the construction process.

Nevertheless, we introduce the following rule which does distinguish between modifications on
static and instance types:

When static modifying methods are called, on a field not belonging to the primary type or any
of the parent types, or directly on a type expression which does not refer to any of the types
in the primary type or parent types, we classify the modification as a static side effect.

This is still consistent with the rules of immutable types, which only look at the fields and assume
that when methods do not modify the fields, they are actually non-modifying. Without an
@IgnoreModifications annotation on the field System.out (which we would typically add), printing to
the console results in

Example 44, static side effects annotation

public K getK() {
System.out.println("Getting "+k);
return k;

We leave it up to the programmer or designer to determine whether static calls deserve a
@StaticSideEffects warning, or not. In almost all instances, we prefer a singleton instance (see
Singleton classes) over a class with modifying static methods. In singletons the normal modification
rules apply, unless @IgnoreModifications decorates the static field giving access to the singleton.

9.6. Value-based classes

Quoting from the JDK 8 documentation, value-based classes are

1. final and immutable (though may contain references to mutable objects);

2. have implementations of equals, hashCode, and toString which are computed solely from the

42

instance’s state and not from its identity or the state of any other object or variable;

3. make no use of identity-sensitive operations such as reference equality (==) between instances,
identity hash code of instances, or synchronization on an instances’s intrinsic lock;

4. are considered equal solely based on equals(), not based on reference equality (==);

5. do not have accessible constructors, but are instead instantiated through factory methods which
make no commitment as to the identity of returned instances;

6. are freely substitutable when equal, meaning that interchanging any two instances x and y that
are equal according to equals() in any computation or method invocation should produce no
visible change in behavior.

Item 1 requires final fields but does not specify any of the restrictions we require for immutability.
Item 2 implies that should equals, hashCode or toString make a modification to the object, its state
changes, which would then change the object with respect to other objects. We could conclude that
these three methods cannot be modifying.

Loosely speaking, objects of a value-based class can be identified by the values of their fields.
Immutability is not a requirement to be a value-based class. However, we expect many immutable
types will become value-classes. Revisiting the example from the previous section, we can construct
a counter-example:

Example 45, immutable type which is not value-based

(he=true)
public class HasUniquelIdentifier<k> {
public final K k;
public final int identifier;

private static final AtomicInteger generator = new AtomicInteger();

public HasUniqueIdentifier(K k) {
this.k = k;
identifier = generator.getAndIncrement();

public boolean equals(Object other) {
if(this == other) return true;
if(other instanceof HasUniqueldentifier<?> hasUniqueldentifier) {
return identifier == hasUniqueldentifier.identifier;

}

return false;

The equals method violates item 2 of the value-class definition, maybe not to the letter but at least
in its spirit: the field k is arguably the most important field, and its value is not taken into account
when computing equality.

43

9.7. Dynamic type annotations

When it is clear a method returns an immutable set, but the formal type is java.util.Set, the
@Immutable annotation can 'travel":

Example 46, revisiting SetBasedContainer6

(hc=true)
class SetBasedContainer6<T> {

(he=true)
public final Set<T> data;

public SetBasedContainer4(Set<T> ts) {
this.data = Set.copyOf(ts);

}
(he=true)

public Set<T> getSet() {
return data;

}

Whilst Set in general is not @Immutable , the data field itself is.

The computations that the analyser needs to track dynamic type annotations, are similar to those it
needs to compute eventual immutability. We introduce them in the next chapter.

10. Eventual immutability

In this section we explore types which follow a two-phase life cycle: the start off as mutable, then
somehow become immutable.

10.1. Builders

We start with the well-established builder paradigm.

44

Example 47, static nested builder type

class Point {
public final double x;
public final double y;

public Point(double x, double y) {
this.x = x;
this.y = y;

class Polygon {

public final List<Point> points;

private Polygon(List<Point> points) { @
this.points = points;

}

(builds=Polygon.class)
static class Builder {

private final List<Point> points = new ArrayList<>();

public void addPoint(Point point) {
points.add(point);
}

public Polygon build() {
return new Polygon(List.copyOf(points));

}

® The private constructor combined with the construction of an immutable copy in the build
method guarantees immutability.

If your code can live with two different types (Polygon.Builder, Polygon) to represent polygons in
their different stages (mutable, immutable), the builder paradigm is great. If, on the other hand,
you want to hold polygons in a type that spans both stages of the polygon lifecycle, it becomes
difficult to do this with an eye on immutability. One solution is the use of an interface that is
implemented both by the builder and the immutable type.

The FirstThen type can also assist in this situation: it holds an initial object (the first) until a state

45

change occurs, and it is forced to hold a second object (the then). Once it is in the final state, it
cannot change anymore. It is eventually immutable:

Example 48, use of FirstThen to make a type eventually immutable

class PolygonManager {
// 1initially, the polygon is in builder phase
public final FirstThen<Polygon.Builder, Polygon> polygon =
new FirstThen<>(new Polygon.Builder());

/] ...

public void construct() {
// in builder phase ...
polygon.getFirst().add(point);
// transition
polygon.set(polygon.getFirst().build());
// from here on, polygon is immutable!

}

public Point firstPoint() {
return polygon.get().points.get(0);
}

10.2. Definition

We propose a system of eventual immutability based on a single transition of state inside an object.

46

Example 49, state change in a boolean field

(after="frozen")
class SimpleImmutableSet1<T> {
private final Set<T> set = new HashSet<>();
private boolean frozen;

(before="frozen")
public boolean add(T t) {
if(frozen) throw new IllegalStateException();
set.add(t);

("frozen")
public void freeze() {
if(frozen) throw new IllegalStateException();
frozen = true;

(after="frozen")
public Stream<T> stream() {
if(!frozen) throw new IllegalStateException();
return set.stream();

("frozen")
public boolean isFrozen() { @
return frozen;

}

public int size() { @
return set.size();

}

@ These methods can be called any time.

The analyser has no problem detecting the presence of preconditions, and observing that one
method changes its own precondition. The rules, however, are sufficiently general to support
arbitrary preconditions, as shown in the following variant. This example does not require an
additional field, but relies on the empty/not-empty state change:

47

Example 50, state change going from empty to non-empty

(after="set")
class SimpleImmutableSet2<T> {
private final Set<T> set = new HashSet<>();

("set")
public void initialize(Set<T> data) {
if(!set.isEmpty()) throw new IllegalStateException();
if(data.isEmpty()) throw new I1legalArgumentException();
set.addAll(data);

(after="set")
public Stream<T> stream() {
if(set.isEmpty()) throw new IllegalStateException();
return set.stream();

}

public int size() {
return set.size();

}

(usetu)
public boolean hasBeenInitialised() {
return !set.isEmpty();

}

Let us summarize the annotations:

* The @Mark annotation marks methods that change the state from before to after.

* The @0nly annotation identifies methods that, because of their precondition, can only be
executed without raising an exception before (when complemented with a before=":-"
parameter) or after (with a after="---" parameter) the transition.

* The analyser computes the @TestMark annotation on methods which return the state as a
boolean. There is a parameter to indicate that instead of returning true when the object is after,
the method actually returns true on before.

* Finally, the eventuality of the type shows in the after=":-" parameter of @FinalFields ,
@Immutable or the shorthand @ImmutableContainer .

In each of these annotations, the actual value of the - in the after= or before= parameters is the
name of the field.

In case there are multiple fields involved, their names are represented in a comma-separated
fashion.

The @Mark and @0nly annotations can also be assigned to parameters, in the event that marked
methods are called on a parameter of eventually immutable type. Consider the following utility

48

method for EventuallyFinal, frequently used in the analyser’s own code:

Example 51, utility method for EventuallyFinal

public static <T> void setFinalAllowEquals(
("isFinal") EventuallyFinal<T> eventuallyFinal, T t) {
if (eventuallyFinal.isVariable() || !Objects.equals(eventuallyFinal.get(), t)) {
eventuallyFinal.setFinal(t);
}

Here, the setFinal method’s @Mark annotation travels to the parameter, where it is applied to the
argument each time the static method is applied.

10.3. Propagation

The support types detailed in Support classes can be used as building blocks to make ever more
complex eventually immutable classes. Effectively final fields of eventually immutable type will at
some point hold objects that are in their final or after state, in which case they act as immutable
fields.

The analyser itself consists of many eventually immutable classes; we show some examples in
Support classes in the analyser.

o For everyday use of eventual immutability, this is probably the most important
consequence of all definitions up to now.

10.4. Before the mark

A method can return an eventually immutable object, guaranteed to be in its initial or before state.
This can be annotated with @BeforeMark . Employing SimpleImmutableSet1 from the example above,

Example 52, @BeforeMark annotation

public SimpleImmutableSet1 create() {
return new SimpleImmutableSet1();

}

Similarly, the analyser can compute a parameter to be @BeforeMark , when in the method, at least
one before-mark methods is called on the parameter.

Finally, a field can even be @BeforeMark , when it is created or arrives in the type as @BeforeMark , and
stays in this state. This situation must occur in a type with a @Finalizer, as explained in Finalizers.

49

10.5. Extensions of annotations

When a type is eventually @FinalFields , should the field(s) of the state transition be marked @Final
? Similarly, when a type is eventually immutable, should the analyser mark the initially mutable or
assignable fields @Modified or @NotModified?

Basically, we propose to mark the end state, qualifying with the parameter after:

property not present eventually effectively

finality of field no annotation, or @Final(after="mark") @Final
@Final(absent=true)

non-modification of @Modified @NotModified(after="ma @NotModified

field rk")

Since in an IDE it is not too easy to have multiple visual markers, it seems best to use the same
visuals as the end state.

When a type is effectively @FinalFields (not eventually), all fields are effectively final. The analyser
wants to emphasise the rules needed to obtain (eventual) immutability, by clearly indicating which
fields break the immutability rules.

Eventual finality simply adds a @Final(after="mark") annotation to each of these situations.

10.6. Frameworks and contracts

A fair number of Java frameworks introduce dependency injection and initializer methods. This
concept is, in many cases, compatible with the idea of eventual immutability: once dependency
injection has taken place, and an initializing method has been called, the framework stops
intervening in the value of the fields.

It is therefore not difficult to imagine, and implement in the analyser, a before state (initialization
still ongoing) and an after state (initialization done) associated with the particular framework. The
example below shows how this could be done for the Verticle interface of the vertx.io framework.

50

https://vertx.io

Example 53, excerpts and annotations of Verticle.java and AbstractVerticle.java

(after="1init")
interface Verticle {
("init")
void init(Vertx vertx, Context context);

(after="init")
Vertx getVertx();

(after="init")
void start(Promise<Void> startPromise) throws Exception;

(after="1init")
void stop(Promise<Void> startPromise) throws Exception;

}
public abstract class AbstractVerticle implements Verticle {

(after="1init")
protected Vertx vertx;

(after="init")

protected Context context;

public Vertx getVertx() {
return vertx;

}

public void init(Vertx vertx, Context context) {
this.vertx = vertx;
this.context = context;

Currently, contracted eventual immutability has not been implemented yet in the analyser.

11. Modification, part 2

This section goes deeper into modification, linking and independence. We start with cyclic
references.

11.1. Cyclic references

We need to study the situation of seemingly non-modifying methods with modifying parameters.
Up to now, a method is only modifying when it assigns to a field, calls a modifying method on one of

31

the fields, or directly calls a modifying method on this.

modifications, as in:

Example 54, indirect modifications

@ImmutableContainer
public class CyclicReferences {

// not @FinalFields, not @Container
static class C1 {

// variable
private int 1i;

@Modified
public int incrementAndGet() {
return ++i;

}

@Modified @

public int useC2(@Modified C2 ¢2) {
return i + c2.incrementAndGetWithI();

}
}

@FinalFields // not @Container
static class C2 {

private final int j;

@Modified
private final C1 c1;

public C2(int j, @lodified €1 ¢1) {

this.c1 = c1;
this.j = j;

}

@Modified

public int incrementAndGetWithI() {
return c1.incrementAndGet() + j;

}

However, there could be indirect

@ use(2 does not directly modify 1, but incrementAndGetWithI does so indirectly.

This observation forces us to tighten the definition of a non-modifying method: on top of the
definition given above, we have to ensure that none of the modifying methods called on a
parameter which is @Modified, call one of 'our' modifying methods. These rules are mostly, but not

32

easily, enforceable when all code is visible.

An additional interface can help to remove the circular dependency between the types. This has the
advantage of simplicity, both for the programmer and the analyser, which at this point doesn’t
handle circular dependencies very well. It imposes more annotation work on the programmer,
however, because the interface’s methods need contracts.

11.2. How to compute linking

To compute linking, the analyser tries to track actual objects, with the aim of knowing if a field
links to another field or a parameter. It computes a dependency graph of variables depending on
other variables, with the following four basic rules:

Rule 1: in an assignment v = w, variable v links to variable w.

Rule 2: in an assignment v = a.method(b),v potentially links to a and b.

Note that saying v links to a is the same as saying that the return value of method links to some field
inside A, the type of a. This is especially clear when a == this.
We discern a number of special cases:

1. When v is of @Immutable type, there cannot be any linking; v does not link to a nor b.
2. If bis of @Immutable type, v cannot link to b.

3. When method has the annotation @Independent (allowing for hidden content, or not), v cannot
link to a.

Recall that primitives, java.lang.Object, java.lang.String, and unbound parameter types, are
@Immutable.

Rule 3: in an assignment v = new A(b), v potentially links to b.

1. When b is of @Immutable type, v cannot link to b.

2. If A is @Immutable , then v cannot link to b, because all its constructor parameters are
independent.

3. When b has been marked @Independent, v cannot link to b.

Rule 4: in a modifying method call a.method(b), a potentially links to b

This situation is similar to that of the constructor (rule 3), with a taking the role of v.

Most of the other linking computations are consequences of the basic rules above. For example,

33

in an assignment v = condition ? a : b, vlinks to both a and b.
type casting does not prevent linking: in v = (Type)w, v links to w

a pattern variable p in an instance-of statement a instanceof P plinksto a

= WMo

Binary operators return primitives or java.lang.String, which prevents linking: inv = a + b, v
does not link to a nor b.

Note: in a method call v = a.method(b, ¢, d), links between b, ¢, and d are possible. They are
covered by the @Modified annotation: when a parameter is @NotModified, no modifications at all are
possible, not even indirectly. We do not compute individual linking, because we advocate the use of
containers: all parameters should be @NotModified.

11.3. Locally implemented abstract methods

Abstract methods are present in interfaces, and abstract classes. Their very definition is that no
implementation is present at the place of definition: only the ins (parameters) and outs (return
type) are pre-defined.

Functional interfaces are interfaces with a single abstract method; any other methods in the
interface are required to have a default implementation. The following table lists some frequently
used ones:

Name single abstract method (SAM)
Consumer<T> void accept(T t);
Function<T,R> R apply(T t);

BiFunction<T, U, R> R apply(T t, U u);
Supplier<R> R get();

Predicate<T> boolean test(T t);

It is important not to forget that any interface defining a single abstract method can be seen as a
functional interface. While the examples above all employ generics (more specifically, unbound
type parameters), generics are not a requirement for functional interfaces. The Java language offers
syntactic sugar for functional programming, but the types remain normal Java types.

We will not make any distinction between a functional interface and an abstract type. If one were
forced to make one, the intention to hold data would be the dividing line between a functional
interface, which conveys no such intention, and an abstract type, which does.

In this section we want to discuss a limited application of functional interfaces: the one where the
SAMs have a local implementation. The general case, where objects of abstract types come in via a
parameter, will be addressed in More on hidden content. Consider the following example:

54

Example 55, concrete implementation of suppliers

@FinalFields @Container
class ApplylLocalFunctions {

@Container
static class Counter {
private int counter;

@Modified
public int increment() {
return ++counter;
}
}

@Modified @

private final Counter myCounter = new Counter();

@Modified @
private final Supplier<Integer> getAndIncrement = myCounter::increment;

@Modified
private final Supplier<Integer> explicitGetAndIncrement = new Supplier<Integer>()

@0verride @Modified
public Integer get() {
return myCounter.increment();

}
};

@Modified
public int myIncrementer() {
return getAndIncrement.get();

}

@Modified
public int myExplicitIncrementer() {
return explicitGetAndIncrement.get();

}

® Modified in getAndIncrement and explicitGetAndIncrement

@ @Modified because its modifying method get is called in myIncrementer

The fields getAndIncrement and explicitGetAndIncrement hold instances of anonymous inner classes
of ApplyLocalFunctions: these inner classes hold data, they have access to the myCounter field. Their
concrete implementations of get each modify myCounter. A straightforward application of the rules
of modification of fields makes getAndIncrement and explicitGetAndIncrement @Modified : in
myIncrementer, a modifying method is applied to getAndIncrement, and in myExplicitIncrementer, a
modifying method is applied to explicitGetAndIncrement.

55

Given that ApplylLocalFunctions is clearly @FinalFields, and the inner classes hold no other data, the
inner classes are @FinalFields as well.

Now, if we move away from suppliers, but use consumers, we can discuss:

Example 56, concrete implementation of consumers
class ApplylLocalFunctions2 {

@Container
static class Counter {
private int counter;

@NotModified
public int getCounter() {
return counter;

}

@Modified
public int increment() {
return ++counter;

}

@NotModified
private final Counter myCounter = new Counter();

@Immutable @
private static final Consumer<Counter> incrementer = Counter::increment;

@Immutable
private static final Consumer<Counter> explicitIncrementer = new Consumer<Counter
>() {
@0verride
@NotModified
public void accept(@Modified Counter counter) { @
counter.increment();
}
Jrs

@ImmutableContainer ®
private static final Consumer<Counter> printer = counter ->
System.out.println("Have " + counter.getCounter());

@ImmutableContainer
private static final Consumer<Counter> explicitPrinter = new Consumer<Counter>() {
@0verride
@NotModified
public void accept(@NotModified Counter counter) { @
System.out.println("Have " + counter.getCounter());

}

36

};

private void apply((contract = true) Consumer<Counter> consumer) { ®
consumer .accept(myCounter);

}

public void useApply() {
apply(printer); // should be fine
apply(explicitPrinter);
apply(incrementer); // should cause an ERROR ®
apply(explicitIncrementer); // should cause an ERROR

@ The anonymous type is static, has no fields, so is @Immutable . It is not a container. This is clearly
visible in the explicit variant...

@ Here we see why incrementer is not a container: the method modifies its parameters.

® Now, we have a container, because in the anonymous type does not modify its parameters.

@ Explicitly visible here in explicitPrinter.

® If we insist that all parameters are containers, ...

® We can use the annotations to detect errors. Here, incrementer is not a container.

Using the @Container annotation in a dynamic way allows us to control which abstract types can use

the method: when only containers are allowed, then the abstract types must not have
implementations which change their parameters.

12. More on hidden content

In this section, we consider modifications to the hidden content of a type, and explain when they
are of importance.

12.1. Visitors

Let’s go back to NonEmptyImmutablelist, first defined in Abstract methods:

57

Example 57, revisiting NonEmptyImmutablelist

@ImmutableContainer
interface NonEmptyImmutablelist<T> extends HasSize {

// implicitly present: @NotModified
@Independent(hc=true)
T first();

// implicitly present: @NotModified
void visit(@Independent(hc=true) Consumer<T> consumer); // implicitly present:
@NotModified

@NotModified

@0verride

default boolean isEmpty() {
return false;

}

We start the discussion with the following immutable implementation of this interface:

Example 58, immutable implementation of NonEmptyImmutablelist

@ImmutableContainer
class ImmutableOne<T> implements NonEmptyImmutablelist<T> {
private final T t;

public ImmutableOne(@Independent(he=true) T t) {
this.t = t;
}

@0verride
public int size() {
return 1;

}

@0verride
public T first() {
return t;

}

@0verride
public void visit(Consumer<T> consumer) {
consumer.accept(t);

}

According to the interface contract, we need the visit method to be non-modifying, and also not to
modify its parameter consumer. However, following the normal definitions of modification, the

38

following two statements hold:

1. Because accept is @Modified, we should mark the parameter consumer as @Modified .

2. Because t, the parameter of accept, is @Modified , we should mark visit as @Modified .

The result of the first statement would violate the @Container property on ImmutableOne, and we’d be
very reluctant to do that: according to the intuitive definition in Containers, ImmutableOne is a type
that holds data, but does not change the data it has been given. This statement still holds in the
presence of a visit method, which is nothing but a way of exposing the object in a way similar to
the method first. The second statement would make visit modifying, which again goes against our
intuition: looping over elements is, in itself, not modifying.

Luckily, there are two observations that come to the rescue.

First, we believe it is correct to assume that concrete implementations of Consumer are semantically
unrelated to ImmutableOne. As a consequence, we could say that the only modifications that concern
us in this visit method, are the potential modifications to accept 's parameter t. Other
modifications, for example those to the fields of the type in which the implementation is present,
may be considered to be outside our scope.

However, if we replace Consumer by Set and accept by add, we encounter a modification that we
really do not want to ignore, in an otherwise equal setting. Therefore, it does not look like we can
reason away potential modifications by accept. We will have to revert to a contracted
@IgnoreModifications annotation on the parameter consumer, if we want to avoid ImmutableOne losing
the @Container property.

While we will ignore this second source of modification in the ImmutableOne type, we will defer or
propagate it to the place where a concrete implementation of the consumer is presented. We can
ignore it here, because t is part of the hidden content of the type; what happens to its content
happens outside the zone of control of ImmutableOne. The fact that it is passed as an argument to a
method of consumer is reflected by the @Independent annotation. It will take care of the propagation
of modifications from the concrete implementation into the hidden content.

This results in the following annotations for visit in ImmutableOne:

Example 59, the visit method in ImmutableOne, fully annotated

public void visit((he=true) Consumer<T> consumer) {
consumer.accept(t);

Note that we assume that we will need @IgnoreModifications for almost every use of a functional
interface from the package java.util.function occurring as a parameter. These types are for
generic use; one should never use them to represent some specific data type where modifications
are of concern to the current type. Therefore, we make this annotation implicit in exactly this
context.

39

o A parameter of a formal functional interface type of java.util.function will be
marked @IgnoreModifications implicitly.

Looking at the more general case of a forEach implementation iterating over a list or array, we
therefore end up with:

Example 60, a generic forEach implementation

public void forEach((hc=true) Consumer<T> consumer) {
for(T t: list) consumer.accept(t);

}

Modifications to the parameter, made by the concrete implementation, are propagated into the
hidden content of 1ist, as shown in the next section. The @Independent annotation appears because
hidden content in list is exposed to the consumer parameter. This annotation does not appear for
the accessible content of the immutable type.

Recall that parameters of modifiable type can already be shielded from external modification by
the @Independent annotation.

12.2. Propagating modifications

Let us apply the visit method of NonEmptyImmutablelist to StringBuilder:

Example 61, propagating the modification of visit

static void print(NonEmptyImmutablelist<StringBuilder> list) {
one.visit(System.out::println); @

+

static void addNewLine(NonEmptyImmutablelist<StringBuilder> list) {
one.visit(sb -> sb.append("\n")); @

}

® Non-modifying method implies no modification on the hidden content of 1ist.

@ Parameter-modifying lambda propagates a modification to list 's hidden content.

It is the second method, addNewLine, that is of importance here. Thanks to the @Modified annotation,
we know of a modification to list. It may help to see the for-loop written out, if we temporarily

assume that we have added an implementation of Iterable to NonEmptyImmutablelist, functionally
identical to visit:

60

Example 62, alternative implementation of addNewlLine

static void addNewLine(NonEmptyImmutablelist<StringBuilder> list) {
for(StringBuilder sb: list) {
sb.append("\n"));
}

Note that while NonEmptyImmutablelist is immutable, its concrete instantiation gives access to a
modifying method in its hidden content.

We really need the link between sb and list for the modification on sb to propagate to list.
Without this propagation, we would not be able to implement the full definition of modification of
parameters, as stipulated in Modification, in this relatively straightforward and probably
frequently occurring situation.

Moving from NonEmptyImmutableList to NonEmptyList, defined here, which has a modifying method,
allows us to contrast two different modifications:

Example 63, contrasting the modification on the parameter sb to that on list

static void addNewLine(NonEmptyList<StringBuilder> list) {
list.visit(sb -> sb.append("\n")); @®

static void replace(NonEmptyList<StringBuilder> list) {
list.setFirst(new StringBuilder("?")); @
¥

@ Modification to the hidden content of 1ist

@ Modification to the modifiable content of 1ist

Without storing additional information (e.g., using an as yet undefined parameter like
@Modified(hc=true) on list in addNewLine), however, we cannot make the distinction between a

modification to the string builders inside list, or a modification to list itself. In other words,
applying the two methods further on, we cannot compute

61

Example 64, using print and addNewL1ine

static String useAddNewLine(StringBuilder input) { ®
NonEmptyList<StringBuilder> list = new One<>();
list.setFirst(input);
addNewLine(list);
return list.qgetFirst().toString();

}

static String useReplace(StringBuilder input) {
NonEmptyList<StringBuilder> list = new One<>();
list.setFirst(input);
replace(list); @
return list.getFirst().toString();

}

@ Should be @Modified , however, in the 3rd statement we cannot know that the modification is to
input rather than to 1ist

@ This action discards input from 1ist without modifying it.

The example shows that the introduction of @Independent only gets us so far: from the
concrete, modifying implementation, to the parameter (or field). We do not plan to keep track
of the distinction between modification of hidden content vs modification of modifiable
content to a further extent.

Finally, we mention again the modification to a field from a concrete lambda:

Example 65, modification of a field outside the scope
List<String> strings = ...
void addToStrings(NonEmptyList<StringBuilder> list) {

list.visit(sb -> strings.add(sb.toString()));
+

12.3. Content linking

Going back to ImmutableOne, we see that the constructor links the parameter t to the instance’s field
by means of assignment. Let us call this binding of parameters of hidden content to the field content
linking, and mark it using @Independent(hc=true) , content dependence:

62

Example 66, constructor of ImmutableOne
private final T t;
public ImmutableOne((he=true) T t) {

this.t = t;
}

Returning a part of the hidden content of the type, or exposing it as argument, both warrants a
@Independent(hc=true) annotation:

Example 67, more methods of ImmutableOne
(hc=true)

public T first() {

return t;

}

public void visit((hc=true) Consumer<T> consumer) {
consumer.accept(t);

}

Observe that content dependence implies absence of dependence, as described in Linking,
dependence and How to compute linking, exactly because we are dealing with type parameters of
an immutable type.

Another place where the hidden content linking can be seen, is the for-each statement:

Example 68, for-each loop and hidden content linking

Immutablelist<StringBuilder> list = ...;

List<StringBuilder> builders = ...;

for(StringBuilder sb: list) {
builders.add(sb);

}

Because the Collection API contains an add method annotated as:

Example 69, add in Collection annotated

boolean add((hc=true) E e);

indicating that after calling add, the argument will become part of the hidden content of the
collection, we conclude that the local loop variable sb gets content linked to the builders list.
Similarly, this loop variable contains hidden content from the list object.

63

Let us look at a possible implementation of Collection.addAll:

Example 70, a possible implementation of addAll in Collection

boolean addAl1((content=true) (he=true) Collection<? extends E>
collection) {

boolean modified = false;

for (E e : c¢) if (add(e)) modified = true;

return modified;

The call to add content links e to this. Because e is also content linked to c, the parameter collection
holds content linked to the hidden content of the instance.

We are now properly armed to see how a for-each loop can be implemented using an iterator
whose hidden content links to that of a container.

12.4. Iterator, Iterable, loops

Let us start with the simplest definition of an iterator, without remove method:

Example 71, the Iterator type, without remove method
interface Iterator<T> {

(he=true)
T next();

boolean hasNext();

Either the next method, or the hasNext method, must make a change to the iterator, because it has to
keep track of the next element. As such, we make both @Modified . Following the discussion in the
previous section, next is @Independent(hc=true) , because it returns part of the hidden content held
by the iterator.

The interface Iterable is a supplier of iterators:

64

Example 72, the Iterable type

interface Iterable<T> {

(hc=true)
Iterator<T> iterator();

First, creating an iterator should never be a modifying operation on a type. Typically, as we explore
in the next section, it implies creating a subtype, static or not, of the type implementing Iterable.
Second, the iterator itself is independent of the fields of the implementing type, but has the ability
to return its hidden content.

The loop, on a variable 1ist of type implementing Iterable<T>, is expressed as for(T t: list) { -
}, and can be interpreted as

Example 73, implementation of for-each using an Iterator
Iterator<T> it = list.iterator();

while(it.hasNext()) {
Tt = it.next();

The iterator it content-links to list; via the next method, it content-links the hidden content of the
list to t.

12.5. Independence of types

A concrete implementation of an iterator is often a nested type, static or not (inner class), of the
iterable type:

65

Example 74, implementation of an Iterator

public class ImmutableArray<T> implements Iterable<T> {

(content=true)
private final T[] elements;

("unchecked")
public ImmutableArray(List<T> input) {
this.elements = (T[]) input.toArray();
}

(hc=true)
public Iterator<T> iterator() {
return new IteratorImpl();

}

(he=true)
class IteratorImpl implements Iterator<T> {
private int 1i;

public boolean hasNext() {
return i < elements.length;

}

public T next() {
return elements[i++];

}

For ImmutableArray to be immutable, the iterator() method must be independent of the field
elements, in other words, the IteratorImpl object must not expose the ImmutableArray 's fields to the
outside world. It cannot be immutable itself, because it needs to hold the state of the iterator.
However, it should protect the fields owned by its enclosing type, up to the same standard as
required for immutability.

We propose to add a definition for the independence of a type, identical to the "shielding off" part
of the definition of immutability. Let’s first go there in a roundabout way:

66

Definition: an external modification is a modification, carried out outside the type,

1. on a field, directly accessed from the object, or

2. on an argument or return value, executed after the constructor or method call on the
object.

Clearly, such external modifications are only possible when the constructor, method or field is non-
private.

Armed with this definition, we can define the independence of types:

Definitions:
A type is dependent when external modifications impact the accessible content of the type.
A type is independent, annotated @Independent , when external modifications cannot impact

the accessible content of the type. The hidden content of the type is mutable or modifiable.

This definition is entirely equivalent to the definition of immutability without rules 0 and 1, and
rules 2 and 3 restricted to those fields that are 'exposed’ to the outside world via linking or content
linking.

Consider the static variant of IteratorImpl, which makes it more obvious that IteratorImpl
maintains a reference to the element array of its enclosing type:

67

Example 75, implementation of an Iterator as a static nested type

The type T is part of the hidden content, the T[] and the counter i are part of the accessible content.
No external modification can impact the array or the counter; indeed, only T and a boolean are
exposed. The latter is immutable, so does not allow modifications. The former allows modifications
on the hidden content, whence the @Independent(hc=true) annotation for IteratorImpl.

Immutable types are independent as a type, but a type does not even have to be immutable to be
independent. In fact, any type communicating via immutable types to the outside world is

public class ImmutableArray<T> implements Iterable<T> {

(hc=true)

static class IteratorImpl implements Iterator<T> {

private int 1i;
private final T[] elements;

private IteratorImpl(T[] elements) {
this.elements = elements;

}

public boolean hasNext() {
return i < elements.length;

}

public T next() {
return elements[i++];

}

independent:

68

Example 76, simple getter and setter, independent

class GetterSetter {
private int i;

public int getI() {
return i;

}

public void setI(int i) {
this.i = 1;

}

The following table summarizes the relationship between immutability and independence by
means of example types:

Mutable, modifiable Immutable with Immutable without
hidden content hidden content
Dependent v Set X X
Independent with + Iterator<T> + Optional<T>, X
hidden content Set.of(T)
Independent v lriter, X V int, String, Class
Iterator<String>

13. Further notes on immutability

13.1. Extendability of types

Unless a class is marked final, sealed, or private, it can be extended in a different source file. In the
context of immutability, this means that any extendable class is like an interface: it must allow for
hidden content.

The analyser, however, can be pragmatic about this. Just as in the case of effectively final fields, it
can compute types to be effectively final, or effectively sealed, when presented with the complete
code base. Indeed, if there is a guarantee of being able to see all code, the analyser can easily
compute if a type has effectively been extended, or not.

This observation shows that the distinction between immutability with and without hidden
content, is rather small.

13.2. Eventual immutability

How does the whole story of eventually final fields and eventual immutability mix with hidden

69

content? At some point, once a necessary precondition has been met, the hidden content will be
well-defined, and modifying methods become unavailable. Before that, fields that will eventually
contain the hidden content may still be null, or may be re-assigned. This should not have any effect,
however, on the computation of hidden content linking, @Independent annotations, and the
propagation of modifications, since the actual types do not change. The two concepts are
sufficiently perpendicular to each other, and can easily co-exist.

13.3. Constant types

A constant type can be defined as an immutable type whose fields are of constant type themselves.
The basis of this recursion are the primitives, possibly boxed, java.lang.String, and
java.lang.(lass, i.e., all the types that can have a Java literal as a value.

The analyser marks a constant type by the string representation of its value, e.g.,
@ImmutableContainer("3.14"), but obviously only in case of fields and method return types. This
seems to be the only practical use of this definition.

So while not really relevant, observe that types can be constant but not @Container ; they can be
eventually constant, and they can be constant with hidden content.

13.4. Field access restrictions

Let us end this section with a note on the non-private requirement for field and method access. The
definitions of immutability and independence insist on the properties holding for all non-private
fields, methods and constructors.

First, consider nested types. Any nested type (a class defined either statically or nested inside
another class, an interface defined inside another type) has access to the private methods of the
primary type and other nested types inside the primary type. We first need to investigate whether
this additional access plays havoc with the immutability and independence rules.

Because all nested types of a primary type are fully known at analysis time, as they must reside in
the same .java file, it is possible to ensure that a field, accessible beyond its own class even though
it is private to the nested type, remains @NotModified. Consider:

70

Example 77, immutability of a nested type

public class NestedTypeExample {

®
static class HoldsStringBuilder {

@
private final StringBuilder sb = new StringBuilder();

public HoldsStringBuilder(String s) {
add(s).add(s);
}

private HoldsStringBuilder add(String s) { ®
sb.append(s);
return this;

public String toString() {
return sb.toString();

}
}

public static String break1(String s) {
HoldsStringBuilder hsb = new HoldsStringBuilder(s);
hsb.add("modify!");
return hsb.toString();

}

public static String break2(String s) {
HoldsStringBuilder hsb = new HoldsStringBuilder(s);
hsb.sb.append("modify field");
return hsb.toString();

}

public static StringBuilder break3(String s) { @
HoldsStringBuilder hsb = new HoldsStringBuilder(s);
hsb.sb.append("modify field");
return hsb.sb;

@ Would have been @ImmutableContainer , were it not for the break methods
@ Because of break2, not because of the presence of add(s).add(s) in the constructor!
® Not only part of construction, because of break1

@ Introduces a dependence of sb on a method return value

71

The solution here, clearly, is to extend the rules to all non-private methods and constructors of the
primary type and all its nested types.

The second question to answer is whether we can or should relax the requirement of private
access, e.g., for a restriction of 'private and same package', or even 'non-public'. Remember that the
protected access modifier allows access to classes that inherit from the type, and to members of the
same package.

First, consider allowing 'package-private'. If we were to assume that all types in the same package
are fully visible to the analyser at the time of analysis, we could consider extending the rules to
analyse all types in the package at the same time, as we did for nested types inside a primary type.
However, firstly, it is perfectly possible, even if it is bad practice, to spread a package over multiple
jars. This denies the analyser complete visibility over the types in a package. Secondly, the
complications that arise computationally are too much for efficient analysis.

So there’s no point in considering protected access. Even if inheritance where the only criterion
used to define this access level, we would not allow it, because the child class can be invisible to the
analyser at the time of analysis of the parent.

When annotating APIs (see e2immu manual), we do use the public vs non-public criterion instead of
the non-private vs private one, mostly as a matter of convenience. We assume (hope?) that library
designers and implementers shield off internal types sufficiently, and rely on the project
implementer to stick to their package prefix.

14. Support classes

The e2immu-support-1.0.0.jar library (in whichever version it comes) essentially contains the
annotations of the analyser, and a small selection of support types. They are the eventually
immutable building blocks that you can use in your project, irrespective of whether you want
analyser support or not.

We discuss a selection of the building blocks here.

14.1. FlipSwitch

Simpler than FlipSwitch is not possible for an eventually immutable type: it consists solely of a
single boolean, which is at the same time the data and the guard:

72

Example 78, most of org.e2immu.support.FlipSwitch

@ImmutableContainer (after="t")
public class FlipSwitch {

@Final(after="t")
private volatile boolean t;

private boolean set$Precondition() { return !t; } @
@Mark("t")
@Modified
public void set() {
if (t) throw new IllegalStateException("Already set");
t = true;

}

@TestMark("t")

@NotModified

public boolean isSet() {
return t;

}

private boolean copy$Precondition() { return !t; } @
eMark("t") @
@Modified
public void copy(FlipSwitch other) {
if (other.isSet()) set();
}

@ This companion method is present in the code to validate the computation of the precondition.
See Preconditions and instance state for more details.

@ The @Mark is present, even if it is executed conditionally.

The obvious use case for this helper class is to indicate whether a certain job has been done, or not.
Once it has been done, it can never be 'undone' again.

14.2. SetOnce

One step up from FlipSwitch is SetOnce: a place-holder for one object which can be filled exactly
once:

73

Example 79, parts of org.e2immu. support.SetOnce

@ImmutableContainer (hc=true, after="t")
public class SetOnce<T> {

@Final(after="t")
private volatile T t;

@Mark("t")
@Modified
public void set(@NotNull @Independent(hc=true) T t) {
if (t == null) throw new NullPointerException("Null not allowed");
if (this.t !'= null) {
throw new I1legalStateException("Already set: have " + this.t + ", try to
set "+ t);

}

this.t = t;
Iy
@Only(after="t")
@NotNull
@Independent(hc=true)
@NotModified

public T get() {
if (t == null) {
throw new I1legalStateException("Not yet set");
}

return t;

}

@TestMark("t")

@NotModified

public boolean isSet() {
return t !'= null;

}

@Independent(hc=true) @

@NotModified

public T getOrDefault(T defaultValue) {
if (isSet()) return get();
return defaultValue;

@ Even if it is only linked to the hidden content conditionally.

The analyser relies heavily on this type, with additional support to allow setting multiple times,
with exactly the same value. This can be ascertained with a helper method, which, as noted in the
previous section, also gets the @Mark annotation.

74

14.3. EventuallyFinal

Slightly more flexible than SetOnce is EventuallyFinal: the type allows you to keep writing objects
using the setVariable method, until you write using setFinal. Then, the state changes and the type
becomes immutable:

Example 80, org.e2immu.support.EventuallyFinal

(hc=true, after="isFinal")
public class EventuallyFinal<T> {
private T value;
private boolean isFinal;

(he=true)
public T get() {
return value;

}
("isFinal")
public void setFinal((he=true) T value) {
if (this.isFinal) {
throw new I1legalStateException("Trying to overwrite a final value");
}
this.isFinal = true;
this.value = value;
}

(before="1isFinal")
public void setVariable((he=true) T value) {
if (this.isFinal) throw new IllegalStateException("Value is already final");
this.value = value;

("isFinal")
public boolean isFinal() {
return isFinal;

}

(value="1isFinal", before=true)
public boolean isVariable() {
return !isFinal;

}

Note the occurrence of a negated @TestMark annotation: isVariable returns the negation of the
normal iFinal mark test.

75

14.4. Freezable

The previous support class, EventuallyFinal, forms the template for a more general approach to
eventual immutability: allow free modifications, until the type is frozen and no modifications can
be allowed anymore.

Example 81, org.e2immu.support.Freezable

(after="frozen") @
public abstract class Freezable {

(after="frozen")
private volatile boolean frozen;

("frozen")
public void freeze() {
ensureNotFrozen();
frozen = true;

("frozen")
public boolean isFrozen() {
return frozen;

}

private boolean ensureNotFrozen$Precondition() { return !frozen; } @
public void ensureNotFrozen() {
if (frozen) throw new IllegalStateException("Already frozen!");

}

private boolean ensureFrozen$Precondition() { return frozen; } @
public void ensureFrozen() {
if (!frozen) throw new I1legalStateException("Not yet frozen!");

}

@ Because the type is abstract, hc=true is implied.

@ This companion method is present in the code to validate the computation of the precondition.
See Preconditions and instance state for more details.

Note that as discussed in Inheritance, it is important for Freezable, as an abstract class, to be
immutable: derived classes can never be immutable when their parents are not immutable.

14.5. SetOnceMap

We discuss one example that makes use of (derives from) Freezable: a freezable map where no
objects can be overwritten:

76

Example 82, part of org.e2immu.support.SetOnceMap

(hc=true, after="frozen")
public class SetOnceMap<K, V> extends Freezable {

private final Map<K, V> map = new HashMap<>();

(before="frozen")
public void put((hc=true) K k,
(he=true) V) {
Objects.requireNonNull(k);
Objects.requireNonNull(v);
ensureNotFrozen();
if (isSet(k)) {
throw new I1legalStateException("Already decided on " + k + ": have " +
get(k) + ", want to write " + v);

}
map.put(k, v);

(he=true)

public V get(K k) {
if (lisSet(k)) throw new I1legalStateException("Not yet decided on " + k);
return Objects.requireNonNull(map.get(k)); @

}

public boolean isSet(K k) { @
return map.containsKey(k);

}

@ The analyser will warn for a potential null pointer exception here, not (yet) making the
connection between isSet and containsKey. This connection can be implemented using the
techniques described in Preconditions and instance state.

@ Implicitly, the parameter K k is @ ndependent , because the method is @NotModified.

The code analyser makes frequent use of this type, often with an additional guard that allows
repeatedly putting the same value to a key.

14.6. Lazy

Lazy implements a lazily-initialized immutable field, of unbound generic type T. Properly
implemented, it is an eventually immutable type:

77

Example 83, org.e2immu.support.Lazy

(hc=true, after="t")
public class Lazy<T> {

(content=true)
(hc=true, after="t")
private Supplier<T> supplier;

(after="t")
private volatile T t;

public Lazy((content=true) (hc=true) Supplier<T> supplier) {
@
this.supplier = supplier;
}
(hc=true)
("t") @
public T get() {
if (t != null) return t;
t = Objects.requireNonNull(supplier.get()); ®
supplier = null; @
return t;
}
public boolean hasBeenEvaluated() {
return t != null;
}
}

® The annotation has travelled from the field to the parameter; therefore the parameter has
@Independent(hc=true).

@ The @Mark annotation is conditional; the transition is triggered by nullity of t

® Here t, part of the hidden content, links to supplier, as explained in Content linking. The
statement also causes the @NotNull(content=true) annotation, as defined in Nullable, not null
and Identity and fluent methods.

@ After the transition from mutable to effectively immutable, the field supplier moves out of the
picture.

After calling the marker method get(), t cannot be assigned anymore, and it becomes @Final . The
constructor parameter supplier is @Independent(hc=true), as its hidden content (the result of get())
links to that of Lazy, namely the field t.

But why is supplier as a field not linked to the constructor parameter? Clearly, supplier is part of
the accessible content of Lazy, as its get() method gets called. The criterion is: a modification on one
may cause a modification on the other. Modifications can only be made by calling the get() method,

78

as there are no other methods, and no fields. Consequently, the constructor should link to the field,
and supplier cannot be @Independent.

The answer lies in the eventual nature of Lazy: before the first call to get, the supplier field is of
relevance to the type, and t is not. After the call to get(), the converse is true, because supplier has
been emptied. We should extend rule 2 of effective immutability by slightly augmenting rule 2:

Rule 2: All fields are either private, of immutable type, or equal to null.

A null field cannot be modified, and cannot be but @Independent , so no changes are necessary to
rules 1 and 3. One can argue that they do not belong to the accessible content, nor to the hidden
content, since they cannot be accessed, and are content-less: rule 4 should not be affected. In
combination with effective finality, this allows the eventually "blanking out" of modifiable fields in
immutable types.

14.7. FirstThen

A variant on SetOnce is FirstThen, an eventually immutable container which starts off with one
value, and transitions to another:

Example 84, org.e2immu.support.FirstThen

(hc=true, after="mark")
public class FirstThen<S, T> {
private volatile S first;
private volatile T then;

public FirstThen((he=true) S first) {
this.first = Objects.requireNonNull(first);
}

(value="first", before=true)

public boolean isFirst() {
return first != null;

}
(value="first")

public boolean isSet() {
return first == null;

}

("mark")
public void set((hc=true) T then) {
Objects.requireNonNull(then);
synchronized (this) {
if (first == null) throw new IllegalStateException("Already set");
this.then = then;

79

first = null;

(before="mark")
(he=true)

public S getFirst() {
if (first == null)
throw new I1legalStateException("Then has been set"); @

S s = first;
if (s == null) throw new NullPointerException();
return s;

(after="mark")
(he=true)

public T get() {
if (first != null) throw new I1legalStateException("Not yet set"); @

T t = then;
if (t == null) throw new NullPointerException();
return t;
}
®
public boolean equals(Object o) {
if (this == 0) return true;
if (o == null || getClass() != o.getClass()) return false;
FirstThen<?, ?> firstThen = (FirstThen<?, 7>) o;
return Objects.equals(first, firstThen.first) &&
Objects.equals(then, firstThen.then);
}

®
public int hashCode() {
return Objects.hash(first, then);

}

@ This is a bit convoluted. The precondition is on the field first, and the current implementation
of the precondition analyser requires an explicit check on the field. Because this field is not
final, we cannot assume that it is still null after the initial check; therefore, we assign it to a local
variable, and do another null check to guarantee that the result that we return is @NotNull.

@ Largely in line with the previous comment: we stick to the precondition on first, and have to
check then to guarantee that the result is @NotNull.

® The equals and hashCode methods inherit the @NotModified annotation from java.lang.Object.

80

Note that if we were to annotate the methods as contracts, rather than relying on the analyser to
detect them, we could have a slightly more efficient implementation.

14.8. Support classes in the analyser

Practice what you preach, and all that. The eZimmu analyser relies heavily on support classes such
as SetOnce, and on the builder pattern described in the previous section. Almost all public types are
containers. Because we intend to use the analyser’s code as a showcase for this project, one
important class (ExpressionContext) was intentionally kept as a non-container.

A good example of our aim for eventual immutability is TypeInfo, the primary container holding a
type. Initially, a type is nothing but a reference, with a fully qualified name. Source code or byte
code inspection augments it with information about its methods and fields. Whilst during
inspection information is writable, after inspection this information becomes immutable. We use
the Dbuilder pattern for Typelnspection, wusing TypelnspectionImpl.Builder first and
TypeInspectionImpl later. The inspection information is stored using SetOnce:

Example 85, explaining org.e2immu.analyser.model.TypeInfo

public class Typelnfo {
public final String fullyQualifiedName;
public final SetOnce<Typelnspection> typelnspection = new SetOnce<>();

Once inspection is over, the code analyser takes over. Results are temporarily stored in
TypeAnalysisImpl.Builder, then copied into the immutable TypeAnalysisImpl class. Both classes
implement the TypeAnalysis interface to shield off the build phase. Once the immutable type is
ready, it is stored in TypeInfo:

Example 86, explaining org.e2immu.analyser.model.TypeInfo

(after="typeAnalysis, typeInspection")
public class Typelnfo {
public final String fullyQualifiedName;

public final SetOnce<TypelInspection> typelnspection = new SetOnce<>();
public final SetOnce<TypeAnalysis> typeAnalysis = new SetOnce<>();

In this way, if we keep playing by the book recursively downward, TypeInfo will become an
eventually immutable type. Software engineers writing applications which use the eZimmu
analyser as a library, can feel secure that once the analysis phase is over, all the inspected and
analysed information remains stable.

81

15. Other annotations

The e2Zimmu project defines a whole host of annotations complementary to the ones required for
immutability. We discuss them briefly, and refer to the user manual for an in-depth analysis.

15.1. Nullable, not null

Nullability is a standard static code analyser topic, which we approach from a computational side:
the analyser infers where possible, the user adds annotations to abstract methods. The complement
of not-null (marked @NotNull) is nullable (marked @Nullable).

* A method marked @NotNull will never return a null result. This is very standard.

 Calling a parameter marked @NotNull will result in a null pointer exception at some point during
the object life-cycle.

* A @NotNull or @Nullable annotation on a field is a consequence of not-null computations on the

assignments to the field.

To be able to compute the not-null of parameters, we must specify some sort of flow or direction to
break chicken-and-egg situations. We compute in the following order:
1. context not-null of parameters: do parameters occur in a not-null context?

2. field not-null: has the field been assigned a value (or values) that are possibly null? does the
field occur in a not-null context?

3. external not-null of parameters linked to fields: once the first two have been computed,
warnings can be given when a parameter, assigned to a nullable field, occurs in a not-null
context

15.1.1. Higher order not-null

We use the annotation @NotNull(content=true) to indicate that none of the object’s fields can be null.
This concept is useful when working with collections.

Consider the following @NotNull variants on the List API:

Example 87, @NotNull annotations on Collection

boolean add(Ee);
boolean addA11((content=true) Collection<? extends E> collection);
(content=true) static <E> List<E> copyOf((content=true) Collection<?

extends E> collection);
(content=true) Iterator<E> iterator();

They effectively block the use of null elements in the collection. As a consequence, looping over the
elements will not give potential null pointer warnings.

82

o This is purely an opinion: we’d rather not use null as elements of a collection. You
are free to annotate differently!

Higher orders are possible as well. A second level would be useful when working with entry sets:

Example 88, @NotNull annotations on Map

V put(K key, V value);
static <K, V> Map<K, V> copyOf(Map<? extends K, ? extends V> map);
(content2=true) Set<Map.Entry<K, V>> entrySet();

Note how the map copy is only @NotNull , while the entry set is not null, the entries in this set are
not null, and the keys and values are neither. There is currently no plan to implement beyond
@NotNull(content=true) , however.

15.2. Identity and fluent methods

The analyser marks methods which returns their first parameter with @Identity, and methods
which return this with @Fluent. The former are convenient to introduce preconditions, the latter
occur frequently when chaining methods in builders. Here is an integrated example:

83

Example 89, methods marked @Identity and @Fluent

(builds=List.class)
class Builder {

private static <T> T requireNonNul1(Tt) {
if(t == null) throw new I1legalArgumentException();
return t;

}

private final List<String> list = new ArraylList<>();

public Builder add(String s) {
list.add(requireNonNull(s));
return this;

public Builder add(int i) {
list.add(Integer.toString(i));
return this;

public List<String> build() {
return List.copyOf(list);
}

public static final Set<String> one23 = new Builder().add(1).add(2).add(3).add("
go").build();
}

15.3. Finalizers

Up to now, we have focused on the distinction between the building phase of an object’s life-cycle,
and its subsequent immutable phase. We have ignored the destruction of objects: critically
important for some applications, but often completely ignored by Java programmers because of the
silent background presence of the garbage collector. In this section we introduce an annotation,
@Finalizer , with the goal of being able to mark that calling a certain method means that the object
has reached the end of its life-cycle:

84

Once a method marked @Finalizer has been called, no other methods may be subsequently
applied.

Why is this useful? The most obvious use-case for immutability is the meaning of the build()
method in a builder: can you call it once, or is the builder somehow incremental? Secondly,
consider "terminal" operations such as findAny or collect on a stream. They close the stream, after
which you are not allowed to use it anymore.

How can the analyser enforce the sequence of method calling on an object?

The simplest way is by some severe restrictions:

The following need to be true at all times when using types with finalizer methods:

1. Any field of a type with finalizers must be effectively final (marked with @Final).

2. A finalizer method can only be called on a field inside a method which is marked as a
finalizer as well.

3. A finalizer method can never be called on a parameter or any variable linked to it, with
linking as defined throughout this document (see Linking, dependence).

Interestingly, these restrictions are such that they help you control the life-cycle of objects with a
@Finalizer, by not letting them out of sight.

Note that the @Finalizer annotation is always contracted; it cannot be computed.

Let us start from the following example, using EventuallyFinal:

85

Example 90, a type with a @Finalizer method
class ExampleWithFinalizer {

private final EventuallyFinal<String> data = new EventuallyFinal<>();

public ExampleWithFinalizer set(String string) {
data.setVariable(string);
return this;

public ExampleWithFinalizer doSomething() {
System.out.println(data.toString());
return this;

public EventuallyFinal<String> getData() {
return data;

}

Using @Fluent methods to go from construction to finalizer is definitely allowed according to the
rules:

Example 91, calling the finalizer method

public static EventuallyFinal<String> fluent() {
EventuallyFinal<String> d = new ExampleWithFinalizer()
.set("a").doSomething().set("b").doSomething().getData();
d.setFinal("x");
return d;

Passing on these objects as arguments is permitted, but the recipient should not call the finalizer.
Actually, given our strong preference for containers, the recipient should not even modify the
object! Consider:

86

Example 92, illegal call

public static EventuallyFinal<String> stepWise() {
ExampleWithFinalizer ex = new ExampleWithFinalizer();
ex.set("a");
ex.doSomething();
ex.set("b");
doSthElse(ex); @
EventuallyFinal<String> d = ex.getData();
d.setFinal("x");

return d;

}

private static void doSthElse(ExampleWithFinalizer ex) {
ex.doSomething(); @

+

@ here we pass on the object
@ forbidden to call the finalizer; other methods allowed.
Rules 1 and 2 allow you to store a finalizer type inside a field, but only when finalization is attached

to the destruction of the holding type. Examples follow immediately, in the context of the
@BeforeMark annotation.

15.3.1. Processors and finishers

It is worth observing that finalizers play well with the @BeforeMark annotation. They allow us to
introduce the concepts of processors and finishers for eventually immutable types in their before
state.

The purpose of a processor is to receive an object in the @BeforeMark state, hold it, use a lot of
temporary data in the meantime, and then release it again, modified but still in the @BeforeMark
state.

87

Example 93, conceptual example of a processor

class Processor {

private int count; @

@

private final EventuallyFinal<String> eventuallyFinal;

public Processor(EventuallyFinal<String> eventuallyFinal) {
this.eventuallyFinal = eventuallyFinal;

}

public void set(String s) { ®
eventuallyFinal.setVariable(s);
count++;

@
public EventuallyFinal<String> done(String last) {
eventuallyFinal.setVariable(last + "; tried " + count);
return eventuallyFinal;

@ symbolises the temporary data to be destroyed after processing

@ the field is private, not passed on, no @Mark method is called on it, and it is exposed only in a

@Finalizer

® symbolises the modifications that act as processing

@ the result of processing: an eventually immutable object in the same initial state.

The purpose of a finisher is to receive an object in the @BeforeMark state, and return it in the final
state. In the meantime, it gets modified (finished), while there is other temporary data around.
Once the final state is reached, the analyser guarantees that the temporary data is destroyed by
severely limiting the scope of the finisher object.

88

Example 94, conceptual example of finisher

class Finisher {
private int count; @

@

private final EventuallyFinal<String> eventuallyFinal;

public Finisher(EventuallyFinal<String> eventuallyFinal) {
this.eventuallyFinal = eventuallyFinal;

}

public void set(String s) { ®
eventuallyFinal.setVariable(s);
count++;

@
public EventuallyFinal<String> done(String last) {
eventuallyFinal.setFinal(last + "; tried " + count);
return eventuallyFinal;

@ symbolises the temporary data to be destroyed.
@ only possible because the transition occurs in a @Finalizer method
® symbolises the modifications that act as finishing

@ the result of finishing: an eventually immutable object in its end-state.

15.4. Utility classes

We use the simple and common definition:
Definition: a utility class is an immutable class which cannot be instantiated.

These definitions imply

1. a utility class has no non-static fields,
2. it has a single, private, unused constructor,

3. and its static fields (if it has any) are of immutable type.

15.5. Extension classes

In Java, many classes cannot be extended easily. Implementations of extensions typically use a

89

utility class with the convention that the first parameter of the static method is the object of the
extended method call:

Example 95, an extension class

(of=String[].class)
class ExtendStringArray {
private ExtendStringArray() { throw new UnsupportedOperationException(); }

public static String weave(String[] strings) {
// generate a new string by weaving the given strings (concat 1st chars, etc.)
}
public static int appendEach(String[] strings, String append) {
// append the parameter 'append' to each of the strings in the array
}

We use the following criteria to designate a class as an extension:

A class is an extension class of a type E when

 the class is immutable;

+ all non-private static methods with parameters must have a @NotNull 1st parameter of
type E, the type being extended. There must be at least one such method;

* non-private static methods without parameters must return a value of type E, and must
also be @NotNull.

Static classes can be used to 'extend' closed types, as promoted by the Xtend project. Immutable
classes can also play the role of extension facilitators, with the additional benefit of having some
immutable data to be used as a context.

Note that extension classes will often not be @Container , since the first parameter will be @Modified
in many cases.

15.6. Singleton classes

A singleton class is a class which has a mechanism to limit the creation of instances to a maximum
of one. The term 'singleton' then refers to this unique instance.

The e2immu analyser currently recognizes two systems for limiting the number of instances: the
creation of an instance in a single static field with a static constructor, and a precondition on a
constructor using a private static boolean field.

An example of the first strategy is:

90

https://www.eclipse.org/xtend/

Example 96, first mechanism recognized to enforce a singleton

public class SingletonExample {
public static final SingletonExample SINGLETON = new SingletonExample(123);
private final int k;

private SingletonExample(int k) {
this.k = k;
}

public int multiply(int i) {
return k * i;

}

An example of the second strategy is:

Example 97, second mechanism recognized to enforce a singleton

public class SingletonWithPrecondition {

private final int k;
private static boolean created;

public SingletonWithPrecondition(int k) {
if (created) throw new I1legalStateException();
created = true;
this.k = k;

}

public int multiply(int 1) {
return k * 1;

}

16. Preconditions and instance state

The e2immu analyser needs pretty strong support for determining preconditions on methods to be
able to compute eventual immutability. A lot of the mechanics involved can be harnessed in other
ways as well, for example, to detect common mistakes in the use of collection classes.

We have implemented a system where the value of a variable can be augmented with instance state
each time a method operates on the variable. In the case of Java collections and StringBuilder, size-
based instance state is low-hanging fruit. Let’s start with an example:

91

Example 98, creating an empty list

List<String> list = new ArraylList<>();
if (list.size() > @) { // WARNING: evaluates to constant

When creating a new ArraylList using the empty constructor, we can store in the variable’s value
that its size is 0. First, let us look at the annotations for the size method:

Example 99, annotations of List.size

void size$Aspect$Size() {}
boolean size$Invariant$Size(int 1) { return i >= 0; }

int size() { return 0; }

The method has two companion methods. The first registers Size as a numeric aspect linked to the
size method. The second adds an invariant (an assertion that is always true) in relation to the
aspect: the size is never negative.

Looking at the annotations for the empty constructor,

Example 100, annotations of empty ArraylList constructor

boolean ArraylList$Modification$Size(int post) { return post == 0; }
public ArrayList$() { }

we see another companion method, that expresses the effect of the construction in terms of the Size
aspect. (The dollar sign at the end of the constructor is an artifact of the annotated API system;
please refer to the e2immu manual.) Internally, we represent the value of 1ist after the assignment
as

Example 101, internal representation of an empty list

new ArrayList<>()/*0==this.size()*/

The expression in the companion results in the fact that the Size aspect post-modification is 0. This
then gets added to the evaluation state, which allows the analyser to conclude that the expression
in the if-statement is a constant true.

This approach is sufficiently strong to catch a number of common problems when working with
collections. After adding one element to the empty list, as in:

Example 102, adding an element to an empty list

List<String> list = new ArraylList<>();
list.add("a");

92

the value of 1ist becomes

Example 103, internal representation after adding an element

instance type ArraylList<String>/*this.contains("a")&&1==this.size()*/

The boolean expression in the comments is added to the evaluation state, so that expressions such
as list.isEmpty(), defined as:

Example 104, List.isEmpty and its companion method
boolean isEmpty$Value$Size(int i, boolean retVal) { return i == 0; }

boolean isEmpty() { return true; }

can be evaluated by the analyser. We refer to the manual for a more in-depth treatment of
companion methods and instance state.

17. Appendix

17.1. Default annotations

When annotating abstract types and methods, or types in the Annotated APIs, observe the following
rules.

A method is @NotModified unless otherwise specified, its parameters are assumed to be @Modified,
unless they are of immutable type.

Due to the large amount of circular type dependencies in the JDK, combined with the current
limitations of the analyser, the implementation of the Annotated API analyser requires contracted
annotations about independence, immutability, and container on the type. The following
combinations are possible with respect ot independence and immutability:

* no independence information: (in)dependence according to the immutability value (not
immutable - dependent, @Immutable(hc=true) - @Independent(hc=true) , @Immutable -
@Independent)

» @Independent(absent=true) : dependent; this requires that the type is not immutable

. @Independent(hc=true) : this is the default for @Immutable(hc=true) ,
@ImmutableContainer(hc=true) , so explicitly writing this annotation is only necessary on non-
immutable types

* @Independent : this is the default for @Immutable , @ImmutableContainer , so so explicitly writing

this annotation is only useful for mutable or @Immutable(hc=true) types

Recall that abstract types always have hidden content, so the hc=true is always implicitly present on
@Independent and @Immutable , @ImmutableContainer on the type. We generally do not write hc=false,
as that is the default value in the annotation. The analyser will complain when hc=false is present

93

on the @Immutable annotation of an abstract type.

To support the user, a warning will be raised when the independence value on the type is
incompatible with that on its methods, parameters and fields.

In a @Container type, all @Fluent methods and all void methods are assumed to be @Modified . Change
this by explicitly marking the method @NotModified or @StaticSideEffects.

Parameters of a non-modifying method are @Independent by default, regardless of an independence
annotation on the type. This can be overwritten by @Independent(absent=true) or
@Independent(hc=true) when the method exposes parts of the fields' object graph via its parameters.
Parameters of a modifying method are assumed to be dependent when the type is not immutable,
and independent when the type is immutable, the hidden content carrying over from immutable to
independent.

Dependence is only explicitly written as @Independent(absent=true) on a type after analysis, when
this type has (eventually) final fields and no modifying methods, as a marker to the user to indicate
that it is the independence property that is missing to reach immutability. Marking a non-
immutable type with @Independent specifies that no parameter or return value can be dependent.
The hidden content parameter given by the user is ignored: you will still have to mark any method
or parameter which communicates hidden content with @Independent(hc=true) .

When a type is immutable, @Independent becomes the default independence annotation for methods
and parameters. You must still use @Independent(hc=true) to indicate communication of hidden
content.

Methods marked @Fluent are always @Independent , because returning the type itself does not expose
any additional information.

Following its definition, @UtilityClass on a type implies @Immutable .

In application mode, the analyser will regard every class that is never extended as effectively final.
This property is only relevant when the type is immutable; the absence of hc=true is a marker.

Parameters of "official" functional interface type (i.e., the type is a functional interface type in the
package java.util.function) have the @IgnoreModifications annotation, unless explicitly
overwritten by @Modified .

The default nullable annotation for parameters and return values of non-primitive type is @Nullable

A factory method is a static method returning an object of the type of the class. Independence of a
factory method is always with respect to the method’s parameters, rather than to the type.
Independence of a factory method’s parameters corresponds to the immutability of the parameter
type. These two rules also applies to any static method in an immutable type. Note that utility
classes are classes that are deeply immutable and cannot be instantiated, so it applies to their static
methods.

In general, annotations are inherited on types, methods and parameters. The properties can
deviate,

94

» from @Modified to @NotModified is possible, from @NotModified to @Modified is not

* independence can go from left to right in @Independent(absent=true) — @Independent(hc=true) -
@Independent, but not from right to left

* a type deriving from an immutable type does not need to be immutable; however, a type
deriving from a non-immutable type can never be immutable

When a method has a single statement, returning a constant value, the
@ImmutableContainer("value") is implicit. Similarly, when a field is explicitly final (it has the final
modifier) and it has an initialiser, then both @Final and, if relevant, @ImmutableContainer("value"), is
implicit.

18. Copyright and License

Copyright © 2020—2023 Bart Naudts, https://www.e2immu.org

This program is free software: you can redistribute it and/or modify it under the terms of the GNU
Lesser General Public License as published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version. This program is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
details. You should have received a copy of the GNU Lesser General Public License along with this
program. If not, see http://www.gnu.org/licenses/.

95

https://www.e2immu.org
http://www.gnu.org/licenses/

	The Road to Immutability
	Table of Contents
	Dedication
	1. Introduction
	2. Assumptions
	3. The purpose of annotations
	4. Final fields
	5. Modification
	6. Containers
	7. Linking, dependence
	8. Accessible and hidden content
	9. Immutability
	9.1. Definition and examples
	9.2. Inheritance
	9.3. Generics
	9.4. Abstract methods
	9.5. Static side effects
	9.6. Value-based classes
	9.7. Dynamic type annotations

	10. Eventual immutability
	10.1. Builders
	10.2. Definition
	10.3. Propagation
	10.4. Before the mark
	10.5. Extensions of annotations
	10.6. Frameworks and contracts

	11. Modification, part 2
	11.1. Cyclic references
	11.2. How to compute linking
	11.3. Locally implemented abstract methods

	12. More on hidden content
	12.1. Visitors
	12.2. Propagating modifications
	12.3. Content linking
	12.4. Iterator, Iterable, loops
	12.5. Independence of types

	13. Further notes on immutability
	13.1. Extendability of types
	13.2. Eventual immutability
	13.3. Constant types
	13.4. Field access restrictions

	14. Support classes
	14.1. FlipSwitch
	14.2. SetOnce
	14.3. EventuallyFinal
	14.4. Freezable
	14.5. SetOnceMap
	14.6. Lazy
	14.7. FirstThen
	14.8. Support classes in the analyser

	15. Other annotations
	15.1. Nullable, not null
	15.2. Identity and fluent methods
	15.3. Finalizers
	15.4. Utility classes
	15.5. Extension classes
	15.6. Singleton classes

	16. Preconditions and instance state
	17. Appendix
	17.1. Default annotations

	18. Copyright and License

